MugheesAwan11 commited on
Commit
d3d8ef0
1 Parent(s): 8db83aa

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,724 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:882
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Data Discovery & Classification Sensitive Data Catalog Sensitive
35
+ Data Catalog People Data Graph People Data Graph Data Mapping Automation View
36
+ Data Subject Request Automation View People Data Graph View Assessment Automation
37
+ View Cookie Consent View Universal Consent View Vendor Risk Assessment View Breach
38
+ Management View Privacy Policy Management View Privacy Center View Data Security
39
+ Posture Management View Data Access Intelligence & Governance View Data Risk Management
40
+ View Data Breach Analysis View Data Catalog View Data Lineage View Data Quality
41
+ View Asset and Data Discovery View Data Access Intelligence & Governance View
42
+ Data Privacy Automation View
43
+ sentences:
44
+ - How does coordinating a response in managing a data breach and meeting global
45
+ regulatory obligations help automate compliance with global privacy regulations?
46
+ - What law replaced Law No. 1682/2001 in Paraguay's data protection regulations
47
+ and what are the restrictions on publicizing sensitive data under it?
48
+ - What are the different components or tools related to Data Discovery & Classification?
49
+ - source_sentence: View Assessment Automation View Cookie Consent View Universal Consent
50
+ View Vendor Risk Assessment View Breach Management View Privacy Policy Management
51
+ View Privacy Center View Learn more Security Identify data risk and enable protection
52
+ & control Data Security Posture Management View Data Access Intelligence & Governance
53
+ View Data Risk Management View Data Breach Analysis View Learn more Governance
54
+ Optimize Data Governance with granular insights into your data Data Catalog View
55
+ Data Lineage View Data Quality View Data Controls Orchestrator View Solutions
56
+ Technologies Covering you everywhere with 1000+ integrations across data systems.
57
+ Snowflake View AW, View Assessment Automation View Cookie Consent View Universal
58
+ Consent View Vendor Risk Assessment View Breach Management View Privacy Policy
59
+ Management View Privacy Center View Learn more Security Identify data risk and
60
+ enable protection & control Data Security Posture Management View Data Access
61
+ Intelligence & Governance View Data Risk Management View Data Breach Analysis
62
+ View Learn more Governance Optimize Data Governance with granular insights into
63
+ your data Data Catalog View Data Lineage View Data Quality View Data Controls
64
+ Orchestrator View Solutions Technologies Covering you everywhere with 1000+ integrations
65
+ across data systems. Snowflake View AW
66
+ sentences:
67
+ - What can the data principal do if the data fiduciary disagrees with their request
68
+ for correction, completion, update, or erasure, and how does cross-border data
69
+ transfer factor in?
70
+ - What is the purpose of the Vendor Risk Assessment for data security and governance?
71
+ - How can privacy automation help in complying with global privacy regulations?
72
+ - source_sentence: 'of 2021 is the British Virgin Island’s main data protection law
73
+ on par with the EU and UK standards. Learn more ### Jamaica The Data Protection
74
+ Act No. 7 of 2020 is Jamaica’s data protection regulation, enforced by the Office
75
+ of the Information Commissioner. Learn more ### Ukraine The Law on Personal Data
76
+ Protection is Ukraine’s main data protection law, making it one of the few such
77
+ regulations that precede the GDPR in Europe. Learn more ### Uzbekistan Uzbekistan
78
+ has several regulations that govern different aspects of data protection within
79
+ the country. Learn more about : Law on Personal Data Bill to Improve the Legal
80
+ Framework for Personal Data Draft Law on Advertising Law on Cybersecurity (No.
81
+ RK 764) ### Monaco Act No. 1.165 on the Protection of Personal Data regulates
82
+ personal data protection-related matters in the Principality of Monaco'
83
+ sentences:
84
+ - What are the conditions for parental consent under PIPL and the requirements for
85
+ privacy notices?
86
+ - What does the Knowledge Center provide information on in relation to security?
87
+ - Which European country has a data protection law that predates the GDPR and is
88
+ enforced by the Information Commissioner's Office?
89
+ - source_sentence: Data Lineage View Data Quality View Asset and Data Discovery View
90
+ Data Access Intelligence & Governance View Data Privacy Automation View Sensitive
91
+ Data Intelligence View Data Flow Intelligence & Governance View Data Consent Automation
92
+ View Data Security Posture Management View Data Breach Impact Analysis & Response
93
+ View Data Catalog View Data Lineage View Solutions Technologies Regulations Roles
94
+ Back Snowflake View AWS View Microsoft 365 View Salesforce View Workday View GCP
95
+ View Azure View Oracle View US California CCPA View US California CPRA View
96
+ sentences:
97
+ - What is the role of data privacy automation in ensuring data protection and compliance?
98
+ - What risks does data security and the cloud help control for enterprises to safely
99
+ harness their power?
100
+ - What is the term for the right to delete personal data upon request, also known
101
+ as 'the right to be forgotten', and what are the other data protection rights
102
+ under GDPR?
103
+ - source_sentence: Consent of an individual is valid if it is reasonable to expect
104
+ that an individual to whom the organization’s activities are directed would understand
105
+ the nature, purpose, and consequences of the collection, use, or disclosure of
106
+ the personal information to which they are consenting. The information must be
107
+ provided in manageable and easily accessible ways to data subjects and data subjects
108
+ must be allowed to withdraw consent. If there is a use or disclosure a data subject
109
+ would not reasonably expect to be occurring, such as certain sharing of information
110
+ with a third party or the tracking of location, express consent would likely be
111
+ required. However, the data subject’s consent may not be required for certain
112
+ data processing activities such as when the collection is “clearly” in the interests
113
+ of the individual and consent cannot be obtained in a timely way, data is being
114
+ collected in the course of employment, journalistic, is already publicly available,
115
+ information is being collected for the detection and prevention of fraud or for
116
+ sentences:
117
+ - How should information be provided to data subjects in manageable and easily accessible
118
+ ways?
119
+ - What are the obligations and requirements for businesses under China's Personal
120
+ Information Protection Law?
121
+ - Which state, following California, Virginia, and Colorado, recently passed privacy
122
+ legislation like the VCDPA?
123
+ model-index:
124
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
125
+ results:
126
+ - task:
127
+ type: information-retrieval
128
+ name: Information Retrieval
129
+ dataset:
130
+ name: dim 768
131
+ type: dim_768
132
+ metrics:
133
+ - type: cosine_accuracy@1
134
+ value: 0.4020618556701031
135
+ name: Cosine Accuracy@1
136
+ - type: cosine_accuracy@3
137
+ value: 0.5567010309278351
138
+ name: Cosine Accuracy@3
139
+ - type: cosine_accuracy@5
140
+ value: 0.6804123711340206
141
+ name: Cosine Accuracy@5
142
+ - type: cosine_accuracy@10
143
+ value: 0.7525773195876289
144
+ name: Cosine Accuracy@10
145
+ - type: cosine_precision@1
146
+ value: 0.4020618556701031
147
+ name: Cosine Precision@1
148
+ - type: cosine_precision@3
149
+ value: 0.1855670103092783
150
+ name: Cosine Precision@3
151
+ - type: cosine_precision@5
152
+ value: 0.1360824742268041
153
+ name: Cosine Precision@5
154
+ - type: cosine_precision@10
155
+ value: 0.07525773195876287
156
+ name: Cosine Precision@10
157
+ - type: cosine_recall@1
158
+ value: 0.4020618556701031
159
+ name: Cosine Recall@1
160
+ - type: cosine_recall@3
161
+ value: 0.5567010309278351
162
+ name: Cosine Recall@3
163
+ - type: cosine_recall@5
164
+ value: 0.6804123711340206
165
+ name: Cosine Recall@5
166
+ - type: cosine_recall@10
167
+ value: 0.7525773195876289
168
+ name: Cosine Recall@10
169
+ - type: cosine_ndcg@10
170
+ value: 0.5649836192344125
171
+ name: Cosine Ndcg@10
172
+ - type: cosine_mrr@10
173
+ value: 0.5059687448862709
174
+ name: Cosine Mrr@10
175
+ - type: cosine_map@100
176
+ value: 0.5167362215588647
177
+ name: Cosine Map@100
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: dim 512
183
+ type: dim_512
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.3917525773195876
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.5876288659793815
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.6288659793814433
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.7525773195876289
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.3917525773195876
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.19587628865979378
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.12577319587628866
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.07525773195876287
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.3917525773195876
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.5876288659793815
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.6288659793814433
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.7525773195876289
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.5625195371806965
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.5031173294059894
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.5141611082081141
229
+ name: Cosine Map@100
230
+ - task:
231
+ type: information-retrieval
232
+ name: Information Retrieval
233
+ dataset:
234
+ name: dim 256
235
+ type: dim_256
236
+ metrics:
237
+ - type: cosine_accuracy@1
238
+ value: 0.38144329896907214
239
+ name: Cosine Accuracy@1
240
+ - type: cosine_accuracy@3
241
+ value: 0.5773195876288659
242
+ name: Cosine Accuracy@3
243
+ - type: cosine_accuracy@5
244
+ value: 0.6391752577319587
245
+ name: Cosine Accuracy@5
246
+ - type: cosine_accuracy@10
247
+ value: 0.711340206185567
248
+ name: Cosine Accuracy@10
249
+ - type: cosine_precision@1
250
+ value: 0.38144329896907214
251
+ name: Cosine Precision@1
252
+ - type: cosine_precision@3
253
+ value: 0.1924398625429553
254
+ name: Cosine Precision@3
255
+ - type: cosine_precision@5
256
+ value: 0.12783505154639174
257
+ name: Cosine Precision@5
258
+ - type: cosine_precision@10
259
+ value: 0.07113402061855668
260
+ name: Cosine Precision@10
261
+ - type: cosine_recall@1
262
+ value: 0.38144329896907214
263
+ name: Cosine Recall@1
264
+ - type: cosine_recall@3
265
+ value: 0.5773195876288659
266
+ name: Cosine Recall@3
267
+ - type: cosine_recall@5
268
+ value: 0.6391752577319587
269
+ name: Cosine Recall@5
270
+ - type: cosine_recall@10
271
+ value: 0.711340206185567
272
+ name: Cosine Recall@10
273
+ - type: cosine_ndcg@10
274
+ value: 0.5460935382949205
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@10
277
+ value: 0.49311078383243345
278
+ name: Cosine Mrr@10
279
+ - type: cosine_map@100
280
+ value: 0.5067772343986099
281
+ name: Cosine Map@100
282
+ ---
283
+
284
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
285
+
286
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
287
+
288
+ ## Model Details
289
+
290
+ ### Model Description
291
+ - **Model Type:** Sentence Transformer
292
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
293
+ - **Maximum Sequence Length:** 512 tokens
294
+ - **Output Dimensionality:** 768 tokens
295
+ - **Similarity Function:** Cosine Similarity
296
+ <!-- - **Training Dataset:** Unknown -->
297
+ - **Language:** en
298
+ - **License:** apache-2.0
299
+
300
+ ### Model Sources
301
+
302
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
303
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
304
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
305
+
306
+ ### Full Model Architecture
307
+
308
+ ```
309
+ SentenceTransformer(
310
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
311
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
312
+ (2): Normalize()
313
+ )
314
+ ```
315
+
316
+ ## Usage
317
+
318
+ ### Direct Usage (Sentence Transformers)
319
+
320
+ First install the Sentence Transformers library:
321
+
322
+ ```bash
323
+ pip install -U sentence-transformers
324
+ ```
325
+
326
+ Then you can load this model and run inference.
327
+ ```python
328
+ from sentence_transformers import SentenceTransformer
329
+
330
+ # Download from the 🤗 Hub
331
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v19")
332
+ # Run inference
333
+ sentences = [
334
+ 'Consent of an individual is valid if it is reasonable to expect that an individual to whom the organization’s activities are directed would understand the nature, purpose, and consequences of the collection, use, or disclosure of the personal information to which they are consenting. The information must be provided in manageable and easily accessible ways to data subjects and data subjects must be allowed to withdraw consent. If there is a use or disclosure a data subject would not reasonably expect to be occurring, such as certain sharing of information with a third party or the tracking of location, express consent would likely be required. However, the data subject’s consent may not be required for certain data processing activities such as when the collection is “clearly” in the interests of the individual and consent cannot be obtained in a timely way, data is being collected in the course of employment, journalistic, is already publicly available, information is being collected for the detection and prevention of fraud or for',
335
+ 'How should information be provided to data subjects in manageable and easily accessible ways?',
336
+ 'Which state, following California, Virginia, and Colorado, recently passed privacy legislation like the VCDPA?',
337
+ ]
338
+ embeddings = model.encode(sentences)
339
+ print(embeddings.shape)
340
+ # [3, 768]
341
+
342
+ # Get the similarity scores for the embeddings
343
+ similarities = model.similarity(embeddings, embeddings)
344
+ print(similarities.shape)
345
+ # [3, 3]
346
+ ```
347
+
348
+ <!--
349
+ ### Direct Usage (Transformers)
350
+
351
+ <details><summary>Click to see the direct usage in Transformers</summary>
352
+
353
+ </details>
354
+ -->
355
+
356
+ <!--
357
+ ### Downstream Usage (Sentence Transformers)
358
+
359
+ You can finetune this model on your own dataset.
360
+
361
+ <details><summary>Click to expand</summary>
362
+
363
+ </details>
364
+ -->
365
+
366
+ <!--
367
+ ### Out-of-Scope Use
368
+
369
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
370
+ -->
371
+
372
+ ## Evaluation
373
+
374
+ ### Metrics
375
+
376
+ #### Information Retrieval
377
+ * Dataset: `dim_768`
378
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
379
+
380
+ | Metric | Value |
381
+ |:--------------------|:-----------|
382
+ | cosine_accuracy@1 | 0.4021 |
383
+ | cosine_accuracy@3 | 0.5567 |
384
+ | cosine_accuracy@5 | 0.6804 |
385
+ | cosine_accuracy@10 | 0.7526 |
386
+ | cosine_precision@1 | 0.4021 |
387
+ | cosine_precision@3 | 0.1856 |
388
+ | cosine_precision@5 | 0.1361 |
389
+ | cosine_precision@10 | 0.0753 |
390
+ | cosine_recall@1 | 0.4021 |
391
+ | cosine_recall@3 | 0.5567 |
392
+ | cosine_recall@5 | 0.6804 |
393
+ | cosine_recall@10 | 0.7526 |
394
+ | cosine_ndcg@10 | 0.565 |
395
+ | cosine_mrr@10 | 0.506 |
396
+ | **cosine_map@100** | **0.5167** |
397
+
398
+ #### Information Retrieval
399
+ * Dataset: `dim_512`
400
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
401
+
402
+ | Metric | Value |
403
+ |:--------------------|:-----------|
404
+ | cosine_accuracy@1 | 0.3918 |
405
+ | cosine_accuracy@3 | 0.5876 |
406
+ | cosine_accuracy@5 | 0.6289 |
407
+ | cosine_accuracy@10 | 0.7526 |
408
+ | cosine_precision@1 | 0.3918 |
409
+ | cosine_precision@3 | 0.1959 |
410
+ | cosine_precision@5 | 0.1258 |
411
+ | cosine_precision@10 | 0.0753 |
412
+ | cosine_recall@1 | 0.3918 |
413
+ | cosine_recall@3 | 0.5876 |
414
+ | cosine_recall@5 | 0.6289 |
415
+ | cosine_recall@10 | 0.7526 |
416
+ | cosine_ndcg@10 | 0.5625 |
417
+ | cosine_mrr@10 | 0.5031 |
418
+ | **cosine_map@100** | **0.5142** |
419
+
420
+ #### Information Retrieval
421
+ * Dataset: `dim_256`
422
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
423
+
424
+ | Metric | Value |
425
+ |:--------------------|:-----------|
426
+ | cosine_accuracy@1 | 0.3814 |
427
+ | cosine_accuracy@3 | 0.5773 |
428
+ | cosine_accuracy@5 | 0.6392 |
429
+ | cosine_accuracy@10 | 0.7113 |
430
+ | cosine_precision@1 | 0.3814 |
431
+ | cosine_precision@3 | 0.1924 |
432
+ | cosine_precision@5 | 0.1278 |
433
+ | cosine_precision@10 | 0.0711 |
434
+ | cosine_recall@1 | 0.3814 |
435
+ | cosine_recall@3 | 0.5773 |
436
+ | cosine_recall@5 | 0.6392 |
437
+ | cosine_recall@10 | 0.7113 |
438
+ | cosine_ndcg@10 | 0.5461 |
439
+ | cosine_mrr@10 | 0.4931 |
440
+ | **cosine_map@100** | **0.5068** |
441
+
442
+ <!--
443
+ ## Bias, Risks and Limitations
444
+
445
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
446
+ -->
447
+
448
+ <!--
449
+ ### Recommendations
450
+
451
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
452
+ -->
453
+
454
+ ## Training Details
455
+
456
+ ### Training Dataset
457
+
458
+ #### Unnamed Dataset
459
+
460
+
461
+ * Size: 882 training samples
462
+ * Columns: <code>positive</code> and <code>anchor</code>
463
+ * Approximate statistics based on the first 1000 samples:
464
+ | | positive | anchor |
465
+ |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
466
+ | type | string | string |
467
+ | details | <ul><li>min: 18 tokens</li><li>mean: 227.32 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 21.98 tokens</li><li>max: 102 tokens</li></ul> |
468
+ * Samples:
469
+ | positive | anchor |
470
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|
471
+ | <code>Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie</code> | <code>What is the purpose of the Data Command Center?</code> |
472
+ | <code>data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into</code> | <code>What is the requirement for notifying the data subject of any extension under GDPR and PDPL?</code> |
473
+ | <code>Automation PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of, PrivacyCenter.Cloud | Data Mapping | DSR Automation | Assessment Automation | Vendor Assessment | Breach Management | Privacy Notice Learn more Sensitive Data Intelligence Discover & Classify Structured and Unstructured Data | People Data Graph Learn more Data Flow Intelligence & Governance Prevent sensitive data sprawl through real-time streaming platforms Learn more Data Consent Automation First Party Consent | Third Party & Cookie Consent Learn more Data Security Posture Management Secure sensitive data in hybrid multicloud and SaaS environments Learn more Data Breach Impact Analysis & Response Analyze impact of a data breach and coordinate response per global regulatory obligations Learn more Data Catalog Automatically catalog datasets and enable users to find, understand, trust and access data Learn more Data Lineage Track changes and transformations of data throughout its</code> | <code>What is the purpose of Third Party & Cookie Consent in data automation and security?</code> |
474
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
475
+ ```json
476
+ {
477
+ "loss": "MultipleNegativesRankingLoss",
478
+ "matryoshka_dims": [
479
+ 768,
480
+ 512,
481
+ 256
482
+ ],
483
+ "matryoshka_weights": [
484
+ 1,
485
+ 1,
486
+ 1
487
+ ],
488
+ "n_dims_per_step": -1
489
+ }
490
+ ```
491
+
492
+ ### Training Hyperparameters
493
+ #### Non-Default Hyperparameters
494
+
495
+ - `eval_strategy`: epoch
496
+ - `per_device_train_batch_size`: 32
497
+ - `per_device_eval_batch_size`: 16
498
+ - `learning_rate`: 2e-05
499
+ - `num_train_epochs`: 4
500
+ - `lr_scheduler_type`: cosine
501
+ - `warmup_ratio`: 0.1
502
+ - `bf16`: True
503
+ - `tf32`: True
504
+ - `load_best_model_at_end`: True
505
+ - `optim`: adamw_torch_fused
506
+ - `batch_sampler`: no_duplicates
507
+
508
+ #### All Hyperparameters
509
+ <details><summary>Click to expand</summary>
510
+
511
+ - `overwrite_output_dir`: False
512
+ - `do_predict`: False
513
+ - `eval_strategy`: epoch
514
+ - `prediction_loss_only`: True
515
+ - `per_device_train_batch_size`: 32
516
+ - `per_device_eval_batch_size`: 16
517
+ - `per_gpu_train_batch_size`: None
518
+ - `per_gpu_eval_batch_size`: None
519
+ - `gradient_accumulation_steps`: 1
520
+ - `eval_accumulation_steps`: None
521
+ - `learning_rate`: 2e-05
522
+ - `weight_decay`: 0.0
523
+ - `adam_beta1`: 0.9
524
+ - `adam_beta2`: 0.999
525
+ - `adam_epsilon`: 1e-08
526
+ - `max_grad_norm`: 1.0
527
+ - `num_train_epochs`: 4
528
+ - `max_steps`: -1
529
+ - `lr_scheduler_type`: cosine
530
+ - `lr_scheduler_kwargs`: {}
531
+ - `warmup_ratio`: 0.1
532
+ - `warmup_steps`: 0
533
+ - `log_level`: passive
534
+ - `log_level_replica`: warning
535
+ - `log_on_each_node`: True
536
+ - `logging_nan_inf_filter`: True
537
+ - `save_safetensors`: True
538
+ - `save_on_each_node`: False
539
+ - `save_only_model`: False
540
+ - `restore_callback_states_from_checkpoint`: False
541
+ - `no_cuda`: False
542
+ - `use_cpu`: False
543
+ - `use_mps_device`: False
544
+ - `seed`: 42
545
+ - `data_seed`: None
546
+ - `jit_mode_eval`: False
547
+ - `use_ipex`: False
548
+ - `bf16`: True
549
+ - `fp16`: False
550
+ - `fp16_opt_level`: O1
551
+ - `half_precision_backend`: auto
552
+ - `bf16_full_eval`: False
553
+ - `fp16_full_eval`: False
554
+ - `tf32`: True
555
+ - `local_rank`: 0
556
+ - `ddp_backend`: None
557
+ - `tpu_num_cores`: None
558
+ - `tpu_metrics_debug`: False
559
+ - `debug`: []
560
+ - `dataloader_drop_last`: False
561
+ - `dataloader_num_workers`: 0
562
+ - `dataloader_prefetch_factor`: None
563
+ - `past_index`: -1
564
+ - `disable_tqdm`: False
565
+ - `remove_unused_columns`: True
566
+ - `label_names`: None
567
+ - `load_best_model_at_end`: True
568
+ - `ignore_data_skip`: False
569
+ - `fsdp`: []
570
+ - `fsdp_min_num_params`: 0
571
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
572
+ - `fsdp_transformer_layer_cls_to_wrap`: None
573
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
574
+ - `deepspeed`: None
575
+ - `label_smoothing_factor`: 0.0
576
+ - `optim`: adamw_torch_fused
577
+ - `optim_args`: None
578
+ - `adafactor`: False
579
+ - `group_by_length`: False
580
+ - `length_column_name`: length
581
+ - `ddp_find_unused_parameters`: None
582
+ - `ddp_bucket_cap_mb`: None
583
+ - `ddp_broadcast_buffers`: False
584
+ - `dataloader_pin_memory`: True
585
+ - `dataloader_persistent_workers`: False
586
+ - `skip_memory_metrics`: True
587
+ - `use_legacy_prediction_loop`: False
588
+ - `push_to_hub`: False
589
+ - `resume_from_checkpoint`: None
590
+ - `hub_model_id`: None
591
+ - `hub_strategy`: every_save
592
+ - `hub_private_repo`: False
593
+ - `hub_always_push`: False
594
+ - `gradient_checkpointing`: False
595
+ - `gradient_checkpointing_kwargs`: None
596
+ - `include_inputs_for_metrics`: False
597
+ - `eval_do_concat_batches`: True
598
+ - `fp16_backend`: auto
599
+ - `push_to_hub_model_id`: None
600
+ - `push_to_hub_organization`: None
601
+ - `mp_parameters`:
602
+ - `auto_find_batch_size`: False
603
+ - `full_determinism`: False
604
+ - `torchdynamo`: None
605
+ - `ray_scope`: last
606
+ - `ddp_timeout`: 1800
607
+ - `torch_compile`: False
608
+ - `torch_compile_backend`: None
609
+ - `torch_compile_mode`: None
610
+ - `dispatch_batches`: None
611
+ - `split_batches`: None
612
+ - `include_tokens_per_second`: False
613
+ - `include_num_input_tokens_seen`: False
614
+ - `neftune_noise_alpha`: None
615
+ - `optim_target_modules`: None
616
+ - `batch_eval_metrics`: False
617
+ - `batch_sampler`: no_duplicates
618
+ - `multi_dataset_batch_sampler`: proportional
619
+
620
+ </details>
621
+
622
+ ### Training Logs
623
+ | Epoch | Step | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
624
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|
625
+ | 0.3571 | 10 | 4.0517 | - | - | - |
626
+ | 0.7143 | 20 | 2.5778 | - | - | - |
627
+ | 1.0 | 28 | - | 0.5304 | 0.5224 | 0.5234 |
628
+ | 1.0714 | 30 | 2.1161 | - | - | - |
629
+ | 1.4286 | 40 | 1.5394 | - | - | - |
630
+ | 1.7857 | 50 | 1.5162 | - | - | - |
631
+ | **2.0** | **56** | **-** | **0.5412** | **0.5382** | **0.5185** |
632
+ | 2.1429 | 60 | 1.202 | - | - | - |
633
+ | 2.5 | 70 | 1.0456 | - | - | - |
634
+ | 2.8571 | 80 | 1.1341 | - | - | - |
635
+ | 3.0 | 84 | - | 0.5340 | 0.5554 | 0.5498 |
636
+ | 3.2143 | 90 | 0.8724 | - | - | - |
637
+ | 3.5714 | 100 | 0.932 | - | - | - |
638
+ | 3.9286 | 110 | 0.9548 | - | - | - |
639
+ | 4.0 | 112 | - | 0.5296 | 0.5487 | 0.5491 |
640
+ | 0.3571 | 10 | 0.9958 | - | - | - |
641
+ | 0.7143 | 20 | 0.8264 | - | - | - |
642
+ | 1.0 | 28 | - | 0.5155 | 0.5250 | 0.5269 |
643
+ | 1.0714 | 30 | 0.7969 | - | - | - |
644
+ | 1.4286 | 40 | 0.6244 | - | - | - |
645
+ | 1.7857 | 50 | 0.6368 | - | - | - |
646
+ | **2.0** | **56** | **-** | **0.5034** | **0.5314** | **0.5233** |
647
+ | 2.1429 | 60 | 0.4748 | - | - | - |
648
+ | 2.5 | 70 | 0.4037 | - | - | - |
649
+ | 2.8571 | 80 | 0.4615 | - | - | - |
650
+ | 3.0 | 84 | - | 0.5079 | 0.5145 | 0.5155 |
651
+ | 3.2143 | 90 | 0.3148 | - | - | - |
652
+ | 3.5714 | 100 | 0.4142 | - | - | - |
653
+ | 3.9286 | 110 | 0.366 | - | - | - |
654
+ | 4.0 | 112 | - | 0.5068 | 0.5142 | 0.5167 |
655
+
656
+ * The bold row denotes the saved checkpoint.
657
+
658
+ ### Framework Versions
659
+ - Python: 3.10.14
660
+ - Sentence Transformers: 3.0.1
661
+ - Transformers: 4.41.2
662
+ - PyTorch: 2.1.2+cu121
663
+ - Accelerate: 0.31.0
664
+ - Datasets: 2.19.1
665
+ - Tokenizers: 0.19.1
666
+
667
+ ## Citation
668
+
669
+ ### BibTeX
670
+
671
+ #### Sentence Transformers
672
+ ```bibtex
673
+ @inproceedings{reimers-2019-sentence-bert,
674
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
675
+ author = "Reimers, Nils and Gurevych, Iryna",
676
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
677
+ month = "11",
678
+ year = "2019",
679
+ publisher = "Association for Computational Linguistics",
680
+ url = "https://arxiv.org/abs/1908.10084",
681
+ }
682
+ ```
683
+
684
+ #### MatryoshkaLoss
685
+ ```bibtex
686
+ @misc{kusupati2024matryoshka,
687
+ title={Matryoshka Representation Learning},
688
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
689
+ year={2024},
690
+ eprint={2205.13147},
691
+ archivePrefix={arXiv},
692
+ primaryClass={cs.LG}
693
+ }
694
+ ```
695
+
696
+ #### MultipleNegativesRankingLoss
697
+ ```bibtex
698
+ @misc{henderson2017efficient,
699
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
700
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
701
+ year={2017},
702
+ eprint={1705.00652},
703
+ archivePrefix={arXiv},
704
+ primaryClass={cs.CL}
705
+ }
706
+ ```
707
+
708
+ <!--
709
+ ## Glossary
710
+
711
+ *Clearly define terms in order to be accessible across audiences.*
712
+ -->
713
+
714
+ <!--
715
+ ## Model Card Authors
716
+
717
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
718
+ -->
719
+
720
+ <!--
721
+ ## Model Card Contact
722
+
723
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
724
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f692b9720727a3a39313a250b99b34dca67676edae52b988f4626a4d224f5c59
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff