Muennighoff
commited on
Commit
·
0d58f6f
1
Parent(s):
1aea373
Add MTEB benchmarking
Browse files
README.md
CHANGED
@@ -4,9 +4,2498 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# SGPT-5.8B-weightedmean-
|
10 |
|
11 |
## Usage
|
12 |
|
@@ -14,16 +2503,16 @@ For usage instructions, refer to our codebase: https://github.com/Muennighoff/sg
|
|
14 |
|
15 |
## Evaluation Results
|
16 |
|
17 |
-
For eval results, refer to
|
18 |
|
19 |
## Training
|
20 |
The model was trained with the parameters:
|
21 |
|
22 |
**DataLoader**:
|
23 |
|
24 |
-
`
|
25 |
```
|
26 |
-
{'batch_size':
|
27 |
```
|
28 |
|
29 |
**Loss**:
|
@@ -36,17 +2525,17 @@ The model was trained with the parameters:
|
|
36 |
Parameters of the fit()-Method:
|
37 |
```
|
38 |
{
|
39 |
-
"epochs":
|
40 |
-
"evaluation_steps":
|
41 |
-
"evaluator": "
|
42 |
"max_grad_norm": 1,
|
43 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
44 |
"optimizer_params": {
|
45 |
-
"lr":
|
46 |
},
|
47 |
"scheduler": "WarmupLinear",
|
48 |
"steps_per_epoch": null,
|
49 |
-
"warmup_steps":
|
50 |
"weight_decay": 0.01
|
51 |
}
|
52 |
```
|
@@ -55,7 +2544,7 @@ Parameters of the fit()-Method:
|
|
55 |
## Full Model Architecture
|
56 |
```
|
57 |
SentenceTransformer(
|
58 |
-
(0): Transformer({'max_seq_length':
|
59 |
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
|
60 |
)
|
61 |
```
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
model-index:
|
8 |
+
- name: SGPT-5.8B-weightedmean-nli-bitfit
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
metrics:
|
18 |
+
- type: accuracy
|
19 |
+
value: 74.07462686567165
|
20 |
+
- type: ap
|
21 |
+
value: 37.44692407529112
|
22 |
+
- type: f1
|
23 |
+
value: 68.28971003916419
|
24 |
+
- task:
|
25 |
+
type: Classification
|
26 |
+
dataset:
|
27 |
+
type: mteb/amazon_counterfactual
|
28 |
+
name: MTEB AmazonCounterfactualClassification (de)
|
29 |
+
config: de
|
30 |
+
split: test
|
31 |
+
metrics:
|
32 |
+
- type: accuracy
|
33 |
+
value: 66.63811563169165
|
34 |
+
- type: ap
|
35 |
+
value: 78.57252079915924
|
36 |
+
- type: f1
|
37 |
+
value: 64.5543087846584
|
38 |
+
- task:
|
39 |
+
type: Classification
|
40 |
+
dataset:
|
41 |
+
type: mteb/amazon_counterfactual
|
42 |
+
name: MTEB AmazonCounterfactualClassification (en-ext)
|
43 |
+
config: en-ext
|
44 |
+
split: test
|
45 |
+
metrics:
|
46 |
+
- type: accuracy
|
47 |
+
value: 77.21889055472263
|
48 |
+
- type: ap
|
49 |
+
value: 25.663426367826712
|
50 |
+
- type: f1
|
51 |
+
value: 64.26265688503176
|
52 |
+
- task:
|
53 |
+
type: Classification
|
54 |
+
dataset:
|
55 |
+
type: mteb/amazon_counterfactual
|
56 |
+
name: MTEB AmazonCounterfactualClassification (ja)
|
57 |
+
config: ja
|
58 |
+
split: test
|
59 |
+
metrics:
|
60 |
+
- type: accuracy
|
61 |
+
value: 58.06209850107067
|
62 |
+
- type: ap
|
63 |
+
value: 14.028219107023915
|
64 |
+
- type: f1
|
65 |
+
value: 48.10387189660778
|
66 |
+
- task:
|
67 |
+
type: Classification
|
68 |
+
dataset:
|
69 |
+
type: mteb/amazon_polarity
|
70 |
+
name: MTEB AmazonPolarityClassification
|
71 |
+
config: default
|
72 |
+
split: test
|
73 |
+
metrics:
|
74 |
+
- type: accuracy
|
75 |
+
value: 82.30920000000002
|
76 |
+
- type: ap
|
77 |
+
value: 76.88786578621213
|
78 |
+
- type: f1
|
79 |
+
value: 82.15455656065011
|
80 |
+
- task:
|
81 |
+
type: Classification
|
82 |
+
dataset:
|
83 |
+
type: mteb/amazon_reviews_multi
|
84 |
+
name: MTEB AmazonReviewsClassification (en)
|
85 |
+
config: en
|
86 |
+
split: test
|
87 |
+
metrics:
|
88 |
+
- type: accuracy
|
89 |
+
value: 41.584
|
90 |
+
- type: f1
|
91 |
+
value: 41.203137944390114
|
92 |
+
- task:
|
93 |
+
type: Classification
|
94 |
+
dataset:
|
95 |
+
type: mteb/amazon_reviews_multi
|
96 |
+
name: MTEB AmazonReviewsClassification (de)
|
97 |
+
config: de
|
98 |
+
split: test
|
99 |
+
metrics:
|
100 |
+
- type: accuracy
|
101 |
+
value: 35.288000000000004
|
102 |
+
- type: f1
|
103 |
+
value: 34.672995558518096
|
104 |
+
- task:
|
105 |
+
type: Classification
|
106 |
+
dataset:
|
107 |
+
type: mteb/amazon_reviews_multi
|
108 |
+
name: MTEB AmazonReviewsClassification (es)
|
109 |
+
config: es
|
110 |
+
split: test
|
111 |
+
metrics:
|
112 |
+
- type: accuracy
|
113 |
+
value: 38.34
|
114 |
+
- type: f1
|
115 |
+
value: 37.608755629529455
|
116 |
+
- task:
|
117 |
+
type: Classification
|
118 |
+
dataset:
|
119 |
+
type: mteb/amazon_reviews_multi
|
120 |
+
name: MTEB AmazonReviewsClassification (fr)
|
121 |
+
config: fr
|
122 |
+
split: test
|
123 |
+
metrics:
|
124 |
+
- type: accuracy
|
125 |
+
value: 37.839999999999996
|
126 |
+
- type: f1
|
127 |
+
value: 36.86898201563507
|
128 |
+
- task:
|
129 |
+
type: Classification
|
130 |
+
dataset:
|
131 |
+
type: mteb/amazon_reviews_multi
|
132 |
+
name: MTEB AmazonReviewsClassification (ja)
|
133 |
+
config: ja
|
134 |
+
split: test
|
135 |
+
metrics:
|
136 |
+
- type: accuracy
|
137 |
+
value: 30.936000000000003
|
138 |
+
- type: f1
|
139 |
+
value: 30.49401738527071
|
140 |
+
- task:
|
141 |
+
type: Classification
|
142 |
+
dataset:
|
143 |
+
type: mteb/amazon_reviews_multi
|
144 |
+
name: MTEB AmazonReviewsClassification (zh)
|
145 |
+
config: zh
|
146 |
+
split: test
|
147 |
+
metrics:
|
148 |
+
- type: accuracy
|
149 |
+
value: 33.75
|
150 |
+
- type: f1
|
151 |
+
value: 33.38338946025617
|
152 |
+
- task:
|
153 |
+
type: Retrieval
|
154 |
+
dataset:
|
155 |
+
type: arguana
|
156 |
+
name: MTEB ArguAna
|
157 |
+
config: default
|
158 |
+
split: test
|
159 |
+
metrics:
|
160 |
+
- type: map_at_1
|
161 |
+
value: 13.727
|
162 |
+
- type: map_at_10
|
163 |
+
value: 26.740000000000002
|
164 |
+
- type: map_at_100
|
165 |
+
value: 28.218
|
166 |
+
- type: map_at_1000
|
167 |
+
value: 28.246
|
168 |
+
- type: map_at_3
|
169 |
+
value: 21.728
|
170 |
+
- type: map_at_5
|
171 |
+
value: 24.371000000000002
|
172 |
+
- type: ndcg_at_1
|
173 |
+
value: 13.727
|
174 |
+
- type: ndcg_at_10
|
175 |
+
value: 35.07
|
176 |
+
- type: ndcg_at_100
|
177 |
+
value: 41.947
|
178 |
+
- type: ndcg_at_1000
|
179 |
+
value: 42.649
|
180 |
+
- type: ndcg_at_3
|
181 |
+
value: 24.484
|
182 |
+
- type: ndcg_at_5
|
183 |
+
value: 29.282999999999998
|
184 |
+
- type: precision_at_1
|
185 |
+
value: 13.727
|
186 |
+
- type: precision_at_10
|
187 |
+
value: 6.223
|
188 |
+
- type: precision_at_100
|
189 |
+
value: 0.9369999999999999
|
190 |
+
- type: precision_at_1000
|
191 |
+
value: 0.099
|
192 |
+
- type: precision_at_3
|
193 |
+
value: 10.835
|
194 |
+
- type: precision_at_5
|
195 |
+
value: 8.848
|
196 |
+
- type: recall_at_1
|
197 |
+
value: 13.727
|
198 |
+
- type: recall_at_10
|
199 |
+
value: 62.233000000000004
|
200 |
+
- type: recall_at_100
|
201 |
+
value: 93.67
|
202 |
+
- type: recall_at_1000
|
203 |
+
value: 99.14699999999999
|
204 |
+
- type: recall_at_3
|
205 |
+
value: 32.504
|
206 |
+
- type: recall_at_5
|
207 |
+
value: 44.239
|
208 |
+
- task:
|
209 |
+
type: Clustering
|
210 |
+
dataset:
|
211 |
+
type: mteb/arxiv-clustering-p2p
|
212 |
+
name: MTEB ArxivClusteringP2P
|
213 |
+
config: default
|
214 |
+
split: test
|
215 |
+
metrics:
|
216 |
+
- type: v_measure
|
217 |
+
value: 40.553923271901695
|
218 |
+
- task:
|
219 |
+
type: Clustering
|
220 |
+
dataset:
|
221 |
+
type: mteb/arxiv-clustering-s2s
|
222 |
+
name: MTEB ArxivClusteringS2S
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
metrics:
|
226 |
+
- type: v_measure
|
227 |
+
value: 32.49323183712211
|
228 |
+
- task:
|
229 |
+
type: Reranking
|
230 |
+
dataset:
|
231 |
+
type: mteb/askubuntudupquestions-reranking
|
232 |
+
name: MTEB AskUbuntuDupQuestions
|
233 |
+
config: default
|
234 |
+
split: test
|
235 |
+
metrics:
|
236 |
+
- type: map
|
237 |
+
value: 55.89811361443445
|
238 |
+
- type: mrr
|
239 |
+
value: 70.16235764850724
|
240 |
+
- task:
|
241 |
+
type: STS
|
242 |
+
dataset:
|
243 |
+
type: mteb/biosses-sts
|
244 |
+
name: MTEB BIOSSES
|
245 |
+
config: default
|
246 |
+
split: test
|
247 |
+
metrics:
|
248 |
+
- type: cos_sim_pearson
|
249 |
+
value: 82.50506557805856
|
250 |
+
- type: cos_sim_spearman
|
251 |
+
value: 79.50000423261176
|
252 |
+
- type: euclidean_pearson
|
253 |
+
value: 75.76190885392926
|
254 |
+
- type: euclidean_spearman
|
255 |
+
value: 76.7330737163434
|
256 |
+
- type: manhattan_pearson
|
257 |
+
value: 75.825318036112
|
258 |
+
- type: manhattan_spearman
|
259 |
+
value: 76.7415076434559
|
260 |
+
- task:
|
261 |
+
type: BitextMining
|
262 |
+
dataset:
|
263 |
+
type: mteb/bucc-bitext-mining
|
264 |
+
name: MTEB BUCC (de-en)
|
265 |
+
config: de-en
|
266 |
+
split: test
|
267 |
+
metrics:
|
268 |
+
- type: accuracy
|
269 |
+
value: 75.49060542797494
|
270 |
+
- type: f1
|
271 |
+
value: 75.15379262352123
|
272 |
+
- type: precision
|
273 |
+
value: 74.99391092553932
|
274 |
+
- type: recall
|
275 |
+
value: 75.49060542797494
|
276 |
+
- task:
|
277 |
+
type: BitextMining
|
278 |
+
dataset:
|
279 |
+
type: mteb/bucc-bitext-mining
|
280 |
+
name: MTEB BUCC (fr-en)
|
281 |
+
config: fr-en
|
282 |
+
split: test
|
283 |
+
metrics:
|
284 |
+
- type: accuracy
|
285 |
+
value: 0.4182258419546555
|
286 |
+
- type: f1
|
287 |
+
value: 0.4182258419546555
|
288 |
+
- type: precision
|
289 |
+
value: 0.4182258419546555
|
290 |
+
- type: recall
|
291 |
+
value: 0.4182258419546555
|
292 |
+
- task:
|
293 |
+
type: BitextMining
|
294 |
+
dataset:
|
295 |
+
type: mteb/bucc-bitext-mining
|
296 |
+
name: MTEB BUCC (ru-en)
|
297 |
+
config: ru-en
|
298 |
+
split: test
|
299 |
+
metrics:
|
300 |
+
- type: accuracy
|
301 |
+
value: 0.013855213023900243
|
302 |
+
- type: f1
|
303 |
+
value: 0.0115460108532502
|
304 |
+
- type: precision
|
305 |
+
value: 0.010391409767925183
|
306 |
+
- type: recall
|
307 |
+
value: 0.013855213023900243
|
308 |
+
- task:
|
309 |
+
type: BitextMining
|
310 |
+
dataset:
|
311 |
+
type: mteb/bucc-bitext-mining
|
312 |
+
name: MTEB BUCC (zh-en)
|
313 |
+
config: zh-en
|
314 |
+
split: test
|
315 |
+
metrics:
|
316 |
+
- type: accuracy
|
317 |
+
value: 0.315955766192733
|
318 |
+
- type: f1
|
319 |
+
value: 0.315955766192733
|
320 |
+
- type: precision
|
321 |
+
value: 0.315955766192733
|
322 |
+
- type: recall
|
323 |
+
value: 0.315955766192733
|
324 |
+
- task:
|
325 |
+
type: Classification
|
326 |
+
dataset:
|
327 |
+
type: mteb/banking77
|
328 |
+
name: MTEB Banking77Classification
|
329 |
+
config: default
|
330 |
+
split: test
|
331 |
+
metrics:
|
332 |
+
- type: accuracy
|
333 |
+
value: 81.74025974025973
|
334 |
+
- type: f1
|
335 |
+
value: 81.66568824876
|
336 |
+
- task:
|
337 |
+
type: Clustering
|
338 |
+
dataset:
|
339 |
+
type: mteb/biorxiv-clustering-p2p
|
340 |
+
name: MTEB BiorxivClusteringP2P
|
341 |
+
config: default
|
342 |
+
split: test
|
343 |
+
metrics:
|
344 |
+
- type: v_measure
|
345 |
+
value: 33.59451202614059
|
346 |
+
- task:
|
347 |
+
type: Clustering
|
348 |
+
dataset:
|
349 |
+
type: mteb/biorxiv-clustering-s2s
|
350 |
+
name: MTEB BiorxivClusteringS2S
|
351 |
+
config: default
|
352 |
+
split: test
|
353 |
+
metrics:
|
354 |
+
- type: v_measure
|
355 |
+
value: 29.128241446157165
|
356 |
+
- task:
|
357 |
+
type: Retrieval
|
358 |
+
dataset:
|
359 |
+
type: BeIR/cqadupstack
|
360 |
+
name: MTEB CQADupstackAndroidRetrieval
|
361 |
+
config: default
|
362 |
+
split: test
|
363 |
+
metrics:
|
364 |
+
- type: map_at_1
|
365 |
+
value: 26.715
|
366 |
+
- type: map_at_10
|
367 |
+
value: 35.007
|
368 |
+
- type: map_at_100
|
369 |
+
value: 36.352000000000004
|
370 |
+
- type: map_at_1000
|
371 |
+
value: 36.51
|
372 |
+
- type: map_at_3
|
373 |
+
value: 32.257999999999996
|
374 |
+
- type: map_at_5
|
375 |
+
value: 33.595000000000006
|
376 |
+
- type: ndcg_at_1
|
377 |
+
value: 33.906
|
378 |
+
- type: ndcg_at_10
|
379 |
+
value: 40.353
|
380 |
+
- type: ndcg_at_100
|
381 |
+
value: 45.562999999999995
|
382 |
+
- type: ndcg_at_1000
|
383 |
+
value: 48.454
|
384 |
+
- type: ndcg_at_3
|
385 |
+
value: 36.349
|
386 |
+
- type: ndcg_at_5
|
387 |
+
value: 37.856
|
388 |
+
- type: precision_at_1
|
389 |
+
value: 33.906
|
390 |
+
- type: precision_at_10
|
391 |
+
value: 7.854
|
392 |
+
- type: precision_at_100
|
393 |
+
value: 1.29
|
394 |
+
- type: precision_at_1000
|
395 |
+
value: 0.188
|
396 |
+
- type: precision_at_3
|
397 |
+
value: 17.549
|
398 |
+
- type: precision_at_5
|
399 |
+
value: 12.561
|
400 |
+
- type: recall_at_1
|
401 |
+
value: 26.715
|
402 |
+
- type: recall_at_10
|
403 |
+
value: 49.508
|
404 |
+
- type: recall_at_100
|
405 |
+
value: 71.76599999999999
|
406 |
+
- type: recall_at_1000
|
407 |
+
value: 91.118
|
408 |
+
- type: recall_at_3
|
409 |
+
value: 37.356
|
410 |
+
- type: recall_at_5
|
411 |
+
value: 41.836
|
412 |
+
- task:
|
413 |
+
type: Retrieval
|
414 |
+
dataset:
|
415 |
+
type: BeIR/cqadupstack
|
416 |
+
name: MTEB CQADupstackEnglishRetrieval
|
417 |
+
config: default
|
418 |
+
split: test
|
419 |
+
metrics:
|
420 |
+
- type: map_at_1
|
421 |
+
value: 19.663
|
422 |
+
- type: map_at_10
|
423 |
+
value: 27.086
|
424 |
+
- type: map_at_100
|
425 |
+
value: 28.066999999999997
|
426 |
+
- type: map_at_1000
|
427 |
+
value: 28.18
|
428 |
+
- type: map_at_3
|
429 |
+
value: 24.819
|
430 |
+
- type: map_at_5
|
431 |
+
value: 26.332
|
432 |
+
- type: ndcg_at_1
|
433 |
+
value: 25.732
|
434 |
+
- type: ndcg_at_10
|
435 |
+
value: 31.613999999999997
|
436 |
+
- type: ndcg_at_100
|
437 |
+
value: 35.757
|
438 |
+
- type: ndcg_at_1000
|
439 |
+
value: 38.21
|
440 |
+
- type: ndcg_at_3
|
441 |
+
value: 28.332
|
442 |
+
- type: ndcg_at_5
|
443 |
+
value: 30.264000000000003
|
444 |
+
- type: precision_at_1
|
445 |
+
value: 25.732
|
446 |
+
- type: precision_at_10
|
447 |
+
value: 6.038
|
448 |
+
- type: precision_at_100
|
449 |
+
value: 1.034
|
450 |
+
- type: precision_at_1000
|
451 |
+
value: 0.149
|
452 |
+
- type: precision_at_3
|
453 |
+
value: 13.864
|
454 |
+
- type: precision_at_5
|
455 |
+
value: 10.241999999999999
|
456 |
+
- type: recall_at_1
|
457 |
+
value: 19.663
|
458 |
+
- type: recall_at_10
|
459 |
+
value: 39.585
|
460 |
+
- type: recall_at_100
|
461 |
+
value: 57.718
|
462 |
+
- type: recall_at_1000
|
463 |
+
value: 74.26700000000001
|
464 |
+
- type: recall_at_3
|
465 |
+
value: 29.845
|
466 |
+
- type: recall_at_5
|
467 |
+
value: 35.105
|
468 |
+
- task:
|
469 |
+
type: Retrieval
|
470 |
+
dataset:
|
471 |
+
type: BeIR/cqadupstack
|
472 |
+
name: MTEB CQADupstackGamingRetrieval
|
473 |
+
config: default
|
474 |
+
split: test
|
475 |
+
metrics:
|
476 |
+
- type: map_at_1
|
477 |
+
value: 30.125
|
478 |
+
- type: map_at_10
|
479 |
+
value: 39.824
|
480 |
+
- type: map_at_100
|
481 |
+
value: 40.935
|
482 |
+
- type: map_at_1000
|
483 |
+
value: 41.019
|
484 |
+
- type: map_at_3
|
485 |
+
value: 37.144
|
486 |
+
- type: map_at_5
|
487 |
+
value: 38.647999999999996
|
488 |
+
- type: ndcg_at_1
|
489 |
+
value: 34.922
|
490 |
+
- type: ndcg_at_10
|
491 |
+
value: 45.072
|
492 |
+
- type: ndcg_at_100
|
493 |
+
value: 50.046
|
494 |
+
- type: ndcg_at_1000
|
495 |
+
value: 51.895
|
496 |
+
- type: ndcg_at_3
|
497 |
+
value: 40.251
|
498 |
+
- type: ndcg_at_5
|
499 |
+
value: 42.581
|
500 |
+
- type: precision_at_1
|
501 |
+
value: 34.922
|
502 |
+
- type: precision_at_10
|
503 |
+
value: 7.303999999999999
|
504 |
+
- type: precision_at_100
|
505 |
+
value: 1.0739999999999998
|
506 |
+
- type: precision_at_1000
|
507 |
+
value: 0.13
|
508 |
+
- type: precision_at_3
|
509 |
+
value: 17.994
|
510 |
+
- type: precision_at_5
|
511 |
+
value: 12.475999999999999
|
512 |
+
- type: recall_at_1
|
513 |
+
value: 30.125
|
514 |
+
- type: recall_at_10
|
515 |
+
value: 57.253
|
516 |
+
- type: recall_at_100
|
517 |
+
value: 79.35799999999999
|
518 |
+
- type: recall_at_1000
|
519 |
+
value: 92.523
|
520 |
+
- type: recall_at_3
|
521 |
+
value: 44.088
|
522 |
+
- type: recall_at_5
|
523 |
+
value: 49.893
|
524 |
+
- task:
|
525 |
+
type: Retrieval
|
526 |
+
dataset:
|
527 |
+
type: BeIR/cqadupstack
|
528 |
+
name: MTEB CQADupstackGisRetrieval
|
529 |
+
config: default
|
530 |
+
split: test
|
531 |
+
metrics:
|
532 |
+
- type: map_at_1
|
533 |
+
value: 16.298000000000002
|
534 |
+
- type: map_at_10
|
535 |
+
value: 21.479
|
536 |
+
- type: map_at_100
|
537 |
+
value: 22.387
|
538 |
+
- type: map_at_1000
|
539 |
+
value: 22.483
|
540 |
+
- type: map_at_3
|
541 |
+
value: 19.743
|
542 |
+
- type: map_at_5
|
543 |
+
value: 20.444000000000003
|
544 |
+
- type: ndcg_at_1
|
545 |
+
value: 17.740000000000002
|
546 |
+
- type: ndcg_at_10
|
547 |
+
value: 24.887
|
548 |
+
- type: ndcg_at_100
|
549 |
+
value: 29.544999999999998
|
550 |
+
- type: ndcg_at_1000
|
551 |
+
value: 32.417
|
552 |
+
- type: ndcg_at_3
|
553 |
+
value: 21.274
|
554 |
+
- type: ndcg_at_5
|
555 |
+
value: 22.399
|
556 |
+
- type: precision_at_1
|
557 |
+
value: 17.740000000000002
|
558 |
+
- type: precision_at_10
|
559 |
+
value: 3.932
|
560 |
+
- type: precision_at_100
|
561 |
+
value: 0.666
|
562 |
+
- type: precision_at_1000
|
563 |
+
value: 0.094
|
564 |
+
- type: precision_at_3
|
565 |
+
value: 8.927
|
566 |
+
- type: precision_at_5
|
567 |
+
value: 6.056
|
568 |
+
- type: recall_at_1
|
569 |
+
value: 16.298000000000002
|
570 |
+
- type: recall_at_10
|
571 |
+
value: 34.031
|
572 |
+
- type: recall_at_100
|
573 |
+
value: 55.769000000000005
|
574 |
+
- type: recall_at_1000
|
575 |
+
value: 78.19500000000001
|
576 |
+
- type: recall_at_3
|
577 |
+
value: 23.799999999999997
|
578 |
+
- type: recall_at_5
|
579 |
+
value: 26.562
|
580 |
+
- task:
|
581 |
+
type: Retrieval
|
582 |
+
dataset:
|
583 |
+
type: BeIR/cqadupstack
|
584 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
585 |
+
config: default
|
586 |
+
split: test
|
587 |
+
metrics:
|
588 |
+
- type: map_at_1
|
589 |
+
value: 10.958
|
590 |
+
- type: map_at_10
|
591 |
+
value: 16.999
|
592 |
+
- type: map_at_100
|
593 |
+
value: 17.979
|
594 |
+
- type: map_at_1000
|
595 |
+
value: 18.112000000000002
|
596 |
+
- type: map_at_3
|
597 |
+
value: 15.010000000000002
|
598 |
+
- type: map_at_5
|
599 |
+
value: 16.256999999999998
|
600 |
+
- type: ndcg_at_1
|
601 |
+
value: 14.179
|
602 |
+
- type: ndcg_at_10
|
603 |
+
value: 20.985
|
604 |
+
- type: ndcg_at_100
|
605 |
+
value: 26.216
|
606 |
+
- type: ndcg_at_1000
|
607 |
+
value: 29.675
|
608 |
+
- type: ndcg_at_3
|
609 |
+
value: 17.28
|
610 |
+
- type: ndcg_at_5
|
611 |
+
value: 19.301
|
612 |
+
- type: precision_at_1
|
613 |
+
value: 14.179
|
614 |
+
- type: precision_at_10
|
615 |
+
value: 3.968
|
616 |
+
- type: precision_at_100
|
617 |
+
value: 0.784
|
618 |
+
- type: precision_at_1000
|
619 |
+
value: 0.121
|
620 |
+
- type: precision_at_3
|
621 |
+
value: 8.541
|
622 |
+
- type: precision_at_5
|
623 |
+
value: 6.468
|
624 |
+
- type: recall_at_1
|
625 |
+
value: 10.958
|
626 |
+
- type: recall_at_10
|
627 |
+
value: 29.903000000000002
|
628 |
+
- type: recall_at_100
|
629 |
+
value: 53.413
|
630 |
+
- type: recall_at_1000
|
631 |
+
value: 78.74799999999999
|
632 |
+
- type: recall_at_3
|
633 |
+
value: 19.717000000000002
|
634 |
+
- type: recall_at_5
|
635 |
+
value: 24.817
|
636 |
+
- task:
|
637 |
+
type: Retrieval
|
638 |
+
dataset:
|
639 |
+
type: BeIR/cqadupstack
|
640 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
641 |
+
config: default
|
642 |
+
split: test
|
643 |
+
metrics:
|
644 |
+
- type: map_at_1
|
645 |
+
value: 21.217
|
646 |
+
- type: map_at_10
|
647 |
+
value: 29.677
|
648 |
+
- type: map_at_100
|
649 |
+
value: 30.928
|
650 |
+
- type: map_at_1000
|
651 |
+
value: 31.063000000000002
|
652 |
+
- type: map_at_3
|
653 |
+
value: 26.611
|
654 |
+
- type: map_at_5
|
655 |
+
value: 28.463
|
656 |
+
- type: ndcg_at_1
|
657 |
+
value: 26.083000000000002
|
658 |
+
- type: ndcg_at_10
|
659 |
+
value: 35.217
|
660 |
+
- type: ndcg_at_100
|
661 |
+
value: 40.715
|
662 |
+
- type: ndcg_at_1000
|
663 |
+
value: 43.559
|
664 |
+
- type: ndcg_at_3
|
665 |
+
value: 30.080000000000002
|
666 |
+
- type: ndcg_at_5
|
667 |
+
value: 32.701
|
668 |
+
- type: precision_at_1
|
669 |
+
value: 26.083000000000002
|
670 |
+
- type: precision_at_10
|
671 |
+
value: 6.622
|
672 |
+
- type: precision_at_100
|
673 |
+
value: 1.115
|
674 |
+
- type: precision_at_1000
|
675 |
+
value: 0.156
|
676 |
+
- type: precision_at_3
|
677 |
+
value: 14.629
|
678 |
+
- type: precision_at_5
|
679 |
+
value: 10.837
|
680 |
+
- type: recall_at_1
|
681 |
+
value: 21.217
|
682 |
+
- type: recall_at_10
|
683 |
+
value: 47.031
|
684 |
+
- type: recall_at_100
|
685 |
+
value: 70.378
|
686 |
+
- type: recall_at_1000
|
687 |
+
value: 89.704
|
688 |
+
- type: recall_at_3
|
689 |
+
value: 32.427
|
690 |
+
- type: recall_at_5
|
691 |
+
value: 39.31
|
692 |
+
- task:
|
693 |
+
type: Retrieval
|
694 |
+
dataset:
|
695 |
+
type: BeIR/cqadupstack
|
696 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
697 |
+
config: default
|
698 |
+
split: test
|
699 |
+
metrics:
|
700 |
+
- type: map_at_1
|
701 |
+
value: 19.274
|
702 |
+
- type: map_at_10
|
703 |
+
value: 26.398
|
704 |
+
- type: map_at_100
|
705 |
+
value: 27.711000000000002
|
706 |
+
- type: map_at_1000
|
707 |
+
value: 27.833000000000002
|
708 |
+
- type: map_at_3
|
709 |
+
value: 24.294
|
710 |
+
- type: map_at_5
|
711 |
+
value: 25.385
|
712 |
+
- type: ndcg_at_1
|
713 |
+
value: 24.886
|
714 |
+
- type: ndcg_at_10
|
715 |
+
value: 30.909
|
716 |
+
- type: ndcg_at_100
|
717 |
+
value: 36.941
|
718 |
+
- type: ndcg_at_1000
|
719 |
+
value: 39.838
|
720 |
+
- type: ndcg_at_3
|
721 |
+
value: 27.455000000000002
|
722 |
+
- type: ndcg_at_5
|
723 |
+
value: 28.828
|
724 |
+
- type: precision_at_1
|
725 |
+
value: 24.886
|
726 |
+
- type: precision_at_10
|
727 |
+
value: 5.6739999999999995
|
728 |
+
- type: precision_at_100
|
729 |
+
value: 1.0290000000000001
|
730 |
+
- type: precision_at_1000
|
731 |
+
value: 0.146
|
732 |
+
- type: precision_at_3
|
733 |
+
value: 13.242
|
734 |
+
- type: precision_at_5
|
735 |
+
value: 9.292
|
736 |
+
- type: recall_at_1
|
737 |
+
value: 19.274
|
738 |
+
- type: recall_at_10
|
739 |
+
value: 39.643
|
740 |
+
- type: recall_at_100
|
741 |
+
value: 66.091
|
742 |
+
- type: recall_at_1000
|
743 |
+
value: 86.547
|
744 |
+
- type: recall_at_3
|
745 |
+
value: 29.602
|
746 |
+
- type: recall_at_5
|
747 |
+
value: 33.561
|
748 |
+
- task:
|
749 |
+
type: Retrieval
|
750 |
+
dataset:
|
751 |
+
type: BeIR/cqadupstack
|
752 |
+
name: MTEB CQADupstackRetrieval
|
753 |
+
config: default
|
754 |
+
split: test
|
755 |
+
metrics:
|
756 |
+
- type: map_at_1
|
757 |
+
value: 18.653666666666666
|
758 |
+
- type: map_at_10
|
759 |
+
value: 25.606666666666666
|
760 |
+
- type: map_at_100
|
761 |
+
value: 26.669333333333334
|
762 |
+
- type: map_at_1000
|
763 |
+
value: 26.795833333333334
|
764 |
+
- type: map_at_3
|
765 |
+
value: 23.43433333333333
|
766 |
+
- type: map_at_5
|
767 |
+
value: 24.609666666666666
|
768 |
+
- type: ndcg_at_1
|
769 |
+
value: 22.742083333333333
|
770 |
+
- type: ndcg_at_10
|
771 |
+
value: 29.978333333333335
|
772 |
+
- type: ndcg_at_100
|
773 |
+
value: 34.89808333333333
|
774 |
+
- type: ndcg_at_1000
|
775 |
+
value: 37.806583333333336
|
776 |
+
- type: ndcg_at_3
|
777 |
+
value: 26.223666666666674
|
778 |
+
- type: ndcg_at_5
|
779 |
+
value: 27.91033333333333
|
780 |
+
- type: precision_at_1
|
781 |
+
value: 22.742083333333333
|
782 |
+
- type: precision_at_10
|
783 |
+
value: 5.397083333333334
|
784 |
+
- type: precision_at_100
|
785 |
+
value: 0.9340000000000002
|
786 |
+
- type: precision_at_1000
|
787 |
+
value: 0.13691666666666663
|
788 |
+
- type: precision_at_3
|
789 |
+
value: 12.331083333333332
|
790 |
+
- type: precision_at_5
|
791 |
+
value: 8.805499999999999
|
792 |
+
- type: recall_at_1
|
793 |
+
value: 18.653666666666666
|
794 |
+
- type: recall_at_10
|
795 |
+
value: 39.22625000000001
|
796 |
+
- type: recall_at_100
|
797 |
+
value: 61.31049999999999
|
798 |
+
- type: recall_at_1000
|
799 |
+
value: 82.19058333333334
|
800 |
+
- type: recall_at_3
|
801 |
+
value: 28.517333333333333
|
802 |
+
- type: recall_at_5
|
803 |
+
value: 32.9565
|
804 |
+
- task:
|
805 |
+
type: Retrieval
|
806 |
+
dataset:
|
807 |
+
type: BeIR/cqadupstack
|
808 |
+
name: MTEB CQADupstackStatsRetrieval
|
809 |
+
config: default
|
810 |
+
split: test
|
811 |
+
metrics:
|
812 |
+
- type: map_at_1
|
813 |
+
value: 16.07
|
814 |
+
- type: map_at_10
|
815 |
+
value: 21.509
|
816 |
+
- type: map_at_100
|
817 |
+
value: 22.335
|
818 |
+
- type: map_at_1000
|
819 |
+
value: 22.437
|
820 |
+
- type: map_at_3
|
821 |
+
value: 19.717000000000002
|
822 |
+
- type: map_at_5
|
823 |
+
value: 20.574
|
824 |
+
- type: ndcg_at_1
|
825 |
+
value: 18.865000000000002
|
826 |
+
- type: ndcg_at_10
|
827 |
+
value: 25.135999999999996
|
828 |
+
- type: ndcg_at_100
|
829 |
+
value: 29.483999999999998
|
830 |
+
- type: ndcg_at_1000
|
831 |
+
value: 32.303
|
832 |
+
- type: ndcg_at_3
|
833 |
+
value: 21.719
|
834 |
+
- type: ndcg_at_5
|
835 |
+
value: 23.039
|
836 |
+
- type: precision_at_1
|
837 |
+
value: 18.865000000000002
|
838 |
+
- type: precision_at_10
|
839 |
+
value: 4.263999999999999
|
840 |
+
- type: precision_at_100
|
841 |
+
value: 0.696
|
842 |
+
- type: precision_at_1000
|
843 |
+
value: 0.1
|
844 |
+
- type: precision_at_3
|
845 |
+
value: 9.866999999999999
|
846 |
+
- type: precision_at_5
|
847 |
+
value: 6.902
|
848 |
+
- type: recall_at_1
|
849 |
+
value: 16.07
|
850 |
+
- type: recall_at_10
|
851 |
+
value: 33.661
|
852 |
+
- type: recall_at_100
|
853 |
+
value: 54.001999999999995
|
854 |
+
- type: recall_at_1000
|
855 |
+
value: 75.564
|
856 |
+
- type: recall_at_3
|
857 |
+
value: 23.956
|
858 |
+
- type: recall_at_5
|
859 |
+
value: 27.264
|
860 |
+
- task:
|
861 |
+
type: Retrieval
|
862 |
+
dataset:
|
863 |
+
type: BeIR/cqadupstack
|
864 |
+
name: MTEB CQADupstackTexRetrieval
|
865 |
+
config: default
|
866 |
+
split: test
|
867 |
+
metrics:
|
868 |
+
- type: map_at_1
|
869 |
+
value: 10.847
|
870 |
+
- type: map_at_10
|
871 |
+
value: 15.518
|
872 |
+
- type: map_at_100
|
873 |
+
value: 16.384
|
874 |
+
- type: map_at_1000
|
875 |
+
value: 16.506
|
876 |
+
- type: map_at_3
|
877 |
+
value: 14.093
|
878 |
+
- type: map_at_5
|
879 |
+
value: 14.868
|
880 |
+
- type: ndcg_at_1
|
881 |
+
value: 13.764999999999999
|
882 |
+
- type: ndcg_at_10
|
883 |
+
value: 18.766
|
884 |
+
- type: ndcg_at_100
|
885 |
+
value: 23.076
|
886 |
+
- type: ndcg_at_1000
|
887 |
+
value: 26.344
|
888 |
+
- type: ndcg_at_3
|
889 |
+
value: 16.150000000000002
|
890 |
+
- type: ndcg_at_5
|
891 |
+
value: 17.373
|
892 |
+
- type: precision_at_1
|
893 |
+
value: 13.764999999999999
|
894 |
+
- type: precision_at_10
|
895 |
+
value: 3.572
|
896 |
+
- type: precision_at_100
|
897 |
+
value: 0.6779999999999999
|
898 |
+
- type: precision_at_1000
|
899 |
+
value: 0.11199999999999999
|
900 |
+
- type: precision_at_3
|
901 |
+
value: 7.88
|
902 |
+
- type: precision_at_5
|
903 |
+
value: 5.712
|
904 |
+
- type: recall_at_1
|
905 |
+
value: 10.847
|
906 |
+
- type: recall_at_10
|
907 |
+
value: 25.141999999999996
|
908 |
+
- type: recall_at_100
|
909 |
+
value: 44.847
|
910 |
+
- type: recall_at_1000
|
911 |
+
value: 68.92099999999999
|
912 |
+
- type: recall_at_3
|
913 |
+
value: 17.721999999999998
|
914 |
+
- type: recall_at_5
|
915 |
+
value: 20.968999999999998
|
916 |
+
- task:
|
917 |
+
type: Retrieval
|
918 |
+
dataset:
|
919 |
+
type: BeIR/cqadupstack
|
920 |
+
name: MTEB CQADupstackUnixRetrieval
|
921 |
+
config: default
|
922 |
+
split: test
|
923 |
+
metrics:
|
924 |
+
- type: map_at_1
|
925 |
+
value: 18.377
|
926 |
+
- type: map_at_10
|
927 |
+
value: 26.005
|
928 |
+
- type: map_at_100
|
929 |
+
value: 26.996
|
930 |
+
- type: map_at_1000
|
931 |
+
value: 27.116
|
932 |
+
- type: map_at_3
|
933 |
+
value: 23.712
|
934 |
+
- type: map_at_5
|
935 |
+
value: 24.859
|
936 |
+
- type: ndcg_at_1
|
937 |
+
value: 22.201
|
938 |
+
- type: ndcg_at_10
|
939 |
+
value: 30.635
|
940 |
+
- type: ndcg_at_100
|
941 |
+
value: 35.623
|
942 |
+
- type: ndcg_at_1000
|
943 |
+
value: 38.551
|
944 |
+
- type: ndcg_at_3
|
945 |
+
value: 26.565
|
946 |
+
- type: ndcg_at_5
|
947 |
+
value: 28.28
|
948 |
+
- type: precision_at_1
|
949 |
+
value: 22.201
|
950 |
+
- type: precision_at_10
|
951 |
+
value: 5.41
|
952 |
+
- type: precision_at_100
|
953 |
+
value: 0.88
|
954 |
+
- type: precision_at_1000
|
955 |
+
value: 0.125
|
956 |
+
- type: precision_at_3
|
957 |
+
value: 12.531
|
958 |
+
- type: precision_at_5
|
959 |
+
value: 8.806
|
960 |
+
- type: recall_at_1
|
961 |
+
value: 18.377
|
962 |
+
- type: recall_at_10
|
963 |
+
value: 40.908
|
964 |
+
- type: recall_at_100
|
965 |
+
value: 63.563
|
966 |
+
- type: recall_at_1000
|
967 |
+
value: 84.503
|
968 |
+
- type: recall_at_3
|
969 |
+
value: 29.793999999999997
|
970 |
+
- type: recall_at_5
|
971 |
+
value: 34.144999999999996
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: BeIR/cqadupstack
|
976 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
+
config: default
|
978 |
+
split: test
|
979 |
+
metrics:
|
980 |
+
- type: map_at_1
|
981 |
+
value: 20.246
|
982 |
+
- type: map_at_10
|
983 |
+
value: 27.528000000000002
|
984 |
+
- type: map_at_100
|
985 |
+
value: 28.78
|
986 |
+
- type: map_at_1000
|
987 |
+
value: 29.002
|
988 |
+
- type: map_at_3
|
989 |
+
value: 25.226
|
990 |
+
- type: map_at_5
|
991 |
+
value: 26.355
|
992 |
+
- type: ndcg_at_1
|
993 |
+
value: 25.099
|
994 |
+
- type: ndcg_at_10
|
995 |
+
value: 32.421
|
996 |
+
- type: ndcg_at_100
|
997 |
+
value: 37.2
|
998 |
+
- type: ndcg_at_1000
|
999 |
+
value: 40.693
|
1000 |
+
- type: ndcg_at_3
|
1001 |
+
value: 28.768
|
1002 |
+
- type: ndcg_at_5
|
1003 |
+
value: 30.23
|
1004 |
+
- type: precision_at_1
|
1005 |
+
value: 25.099
|
1006 |
+
- type: precision_at_10
|
1007 |
+
value: 6.245
|
1008 |
+
- type: precision_at_100
|
1009 |
+
value: 1.269
|
1010 |
+
- type: precision_at_1000
|
1011 |
+
value: 0.218
|
1012 |
+
- type: precision_at_3
|
1013 |
+
value: 13.767999999999999
|
1014 |
+
- type: precision_at_5
|
1015 |
+
value: 9.881
|
1016 |
+
- type: recall_at_1
|
1017 |
+
value: 20.246
|
1018 |
+
- type: recall_at_10
|
1019 |
+
value: 41.336
|
1020 |
+
- type: recall_at_100
|
1021 |
+
value: 63.098
|
1022 |
+
- type: recall_at_1000
|
1023 |
+
value: 86.473
|
1024 |
+
- type: recall_at_3
|
1025 |
+
value: 30.069000000000003
|
1026 |
+
- type: recall_at_5
|
1027 |
+
value: 34.262
|
1028 |
+
- task:
|
1029 |
+
type: Retrieval
|
1030 |
+
dataset:
|
1031 |
+
type: BeIR/cqadupstack
|
1032 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1033 |
+
config: default
|
1034 |
+
split: test
|
1035 |
+
metrics:
|
1036 |
+
- type: map_at_1
|
1037 |
+
value: 14.054
|
1038 |
+
- type: map_at_10
|
1039 |
+
value: 20.25
|
1040 |
+
- type: map_at_100
|
1041 |
+
value: 21.178
|
1042 |
+
- type: map_at_1000
|
1043 |
+
value: 21.288999999999998
|
1044 |
+
- type: map_at_3
|
1045 |
+
value: 18.584999999999997
|
1046 |
+
- type: map_at_5
|
1047 |
+
value: 19.536
|
1048 |
+
- type: ndcg_at_1
|
1049 |
+
value: 15.527
|
1050 |
+
- type: ndcg_at_10
|
1051 |
+
value: 23.745
|
1052 |
+
- type: ndcg_at_100
|
1053 |
+
value: 28.610999999999997
|
1054 |
+
- type: ndcg_at_1000
|
1055 |
+
value: 31.740000000000002
|
1056 |
+
- type: ndcg_at_3
|
1057 |
+
value: 20.461
|
1058 |
+
- type: ndcg_at_5
|
1059 |
+
value: 22.072
|
1060 |
+
- type: precision_at_1
|
1061 |
+
value: 15.527
|
1062 |
+
- type: precision_at_10
|
1063 |
+
value: 3.882
|
1064 |
+
- type: precision_at_100
|
1065 |
+
value: 0.6930000000000001
|
1066 |
+
- type: precision_at_1000
|
1067 |
+
value: 0.104
|
1068 |
+
- type: precision_at_3
|
1069 |
+
value: 9.181000000000001
|
1070 |
+
- type: precision_at_5
|
1071 |
+
value: 6.433
|
1072 |
+
- type: recall_at_1
|
1073 |
+
value: 14.054
|
1074 |
+
- type: recall_at_10
|
1075 |
+
value: 32.714
|
1076 |
+
- type: recall_at_100
|
1077 |
+
value: 55.723
|
1078 |
+
- type: recall_at_1000
|
1079 |
+
value: 79.72399999999999
|
1080 |
+
- type: recall_at_3
|
1081 |
+
value: 23.832
|
1082 |
+
- type: recall_at_5
|
1083 |
+
value: 27.754
|
1084 |
+
- task:
|
1085 |
+
type: Retrieval
|
1086 |
+
dataset:
|
1087 |
+
type: climate-fever
|
1088 |
+
name: MTEB ClimateFEVER
|
1089 |
+
config: default
|
1090 |
+
split: test
|
1091 |
+
metrics:
|
1092 |
+
- type: map_at_1
|
1093 |
+
value: 6.122
|
1094 |
+
- type: map_at_10
|
1095 |
+
value: 11.556
|
1096 |
+
- type: map_at_100
|
1097 |
+
value: 12.998000000000001
|
1098 |
+
- type: map_at_1000
|
1099 |
+
value: 13.202
|
1100 |
+
- type: map_at_3
|
1101 |
+
value: 9.657
|
1102 |
+
- type: map_at_5
|
1103 |
+
value: 10.585
|
1104 |
+
- type: ndcg_at_1
|
1105 |
+
value: 15.049000000000001
|
1106 |
+
- type: ndcg_at_10
|
1107 |
+
value: 17.574
|
1108 |
+
- type: ndcg_at_100
|
1109 |
+
value: 24.465999999999998
|
1110 |
+
- type: ndcg_at_1000
|
1111 |
+
value: 28.511999999999997
|
1112 |
+
- type: ndcg_at_3
|
1113 |
+
value: 13.931
|
1114 |
+
- type: ndcg_at_5
|
1115 |
+
value: 15.112
|
1116 |
+
- type: precision_at_1
|
1117 |
+
value: 15.049000000000001
|
1118 |
+
- type: precision_at_10
|
1119 |
+
value: 5.831
|
1120 |
+
- type: precision_at_100
|
1121 |
+
value: 1.322
|
1122 |
+
- type: precision_at_1000
|
1123 |
+
value: 0.20500000000000002
|
1124 |
+
- type: precision_at_3
|
1125 |
+
value: 10.749
|
1126 |
+
- type: precision_at_5
|
1127 |
+
value: 8.365
|
1128 |
+
- type: recall_at_1
|
1129 |
+
value: 6.122
|
1130 |
+
- type: recall_at_10
|
1131 |
+
value: 22.207
|
1132 |
+
- type: recall_at_100
|
1133 |
+
value: 47.08
|
1134 |
+
- type: recall_at_1000
|
1135 |
+
value: 70.182
|
1136 |
+
- type: recall_at_3
|
1137 |
+
value: 13.416
|
1138 |
+
- type: recall_at_5
|
1139 |
+
value: 16.672
|
1140 |
+
- task:
|
1141 |
+
type: Retrieval
|
1142 |
+
dataset:
|
1143 |
+
type: dbpedia-entity
|
1144 |
+
name: MTEB DBPedia
|
1145 |
+
config: default
|
1146 |
+
split: test
|
1147 |
+
metrics:
|
1148 |
+
- type: map_at_1
|
1149 |
+
value: 4.672
|
1150 |
+
- type: map_at_10
|
1151 |
+
value: 10.534
|
1152 |
+
- type: map_at_100
|
1153 |
+
value: 14.798
|
1154 |
+
- type: map_at_1000
|
1155 |
+
value: 15.927
|
1156 |
+
- type: map_at_3
|
1157 |
+
value: 7.317
|
1158 |
+
- type: map_at_5
|
1159 |
+
value: 8.726
|
1160 |
+
- type: ndcg_at_1
|
1161 |
+
value: 36.5
|
1162 |
+
- type: ndcg_at_10
|
1163 |
+
value: 26.098
|
1164 |
+
- type: ndcg_at_100
|
1165 |
+
value: 29.215999999999998
|
1166 |
+
- type: ndcg_at_1000
|
1167 |
+
value: 36.254999999999995
|
1168 |
+
- type: ndcg_at_3
|
1169 |
+
value: 29.247
|
1170 |
+
- type: ndcg_at_5
|
1171 |
+
value: 27.692
|
1172 |
+
- type: precision_at_1
|
1173 |
+
value: 47.25
|
1174 |
+
- type: precision_at_10
|
1175 |
+
value: 22.625
|
1176 |
+
- type: precision_at_100
|
1177 |
+
value: 7.042
|
1178 |
+
- type: precision_at_1000
|
1179 |
+
value: 1.6129999999999998
|
1180 |
+
- type: precision_at_3
|
1181 |
+
value: 34.083000000000006
|
1182 |
+
- type: precision_at_5
|
1183 |
+
value: 29.5
|
1184 |
+
- type: recall_at_1
|
1185 |
+
value: 4.672
|
1186 |
+
- type: recall_at_10
|
1187 |
+
value: 15.638
|
1188 |
+
- type: recall_at_100
|
1189 |
+
value: 36.228
|
1190 |
+
- type: recall_at_1000
|
1191 |
+
value: 58.831
|
1192 |
+
- type: recall_at_3
|
1193 |
+
value: 8.578
|
1194 |
+
- type: recall_at_5
|
1195 |
+
value: 11.18
|
1196 |
+
- task:
|
1197 |
+
type: Classification
|
1198 |
+
dataset:
|
1199 |
+
type: mteb/emotion
|
1200 |
+
name: MTEB EmotionClassification
|
1201 |
+
config: default
|
1202 |
+
split: test
|
1203 |
+
metrics:
|
1204 |
+
- type: accuracy
|
1205 |
+
value: 49.919999999999995
|
1206 |
+
- type: f1
|
1207 |
+
value: 45.37973678791632
|
1208 |
+
- task:
|
1209 |
+
type: Retrieval
|
1210 |
+
dataset:
|
1211 |
+
type: fever
|
1212 |
+
name: MTEB FEVER
|
1213 |
+
config: default
|
1214 |
+
split: test
|
1215 |
+
metrics:
|
1216 |
+
- type: map_at_1
|
1217 |
+
value: 25.801000000000002
|
1218 |
+
- type: map_at_10
|
1219 |
+
value: 33.941
|
1220 |
+
- type: map_at_100
|
1221 |
+
value: 34.73
|
1222 |
+
- type: map_at_1000
|
1223 |
+
value: 34.793
|
1224 |
+
- type: map_at_3
|
1225 |
+
value: 31.705
|
1226 |
+
- type: map_at_5
|
1227 |
+
value: 33.047
|
1228 |
+
- type: ndcg_at_1
|
1229 |
+
value: 27.933000000000003
|
1230 |
+
- type: ndcg_at_10
|
1231 |
+
value: 38.644
|
1232 |
+
- type: ndcg_at_100
|
1233 |
+
value: 42.594
|
1234 |
+
- type: ndcg_at_1000
|
1235 |
+
value: 44.352000000000004
|
1236 |
+
- type: ndcg_at_3
|
1237 |
+
value: 34.199
|
1238 |
+
- type: ndcg_at_5
|
1239 |
+
value: 36.573
|
1240 |
+
- type: precision_at_1
|
1241 |
+
value: 27.933000000000003
|
1242 |
+
- type: precision_at_10
|
1243 |
+
value: 5.603000000000001
|
1244 |
+
- type: precision_at_100
|
1245 |
+
value: 0.773
|
1246 |
+
- type: precision_at_1000
|
1247 |
+
value: 0.094
|
1248 |
+
- type: precision_at_3
|
1249 |
+
value: 14.171
|
1250 |
+
- type: precision_at_5
|
1251 |
+
value: 9.786999999999999
|
1252 |
+
- type: recall_at_1
|
1253 |
+
value: 25.801000000000002
|
1254 |
+
- type: recall_at_10
|
1255 |
+
value: 50.876
|
1256 |
+
- type: recall_at_100
|
1257 |
+
value: 69.253
|
1258 |
+
- type: recall_at_1000
|
1259 |
+
value: 82.907
|
1260 |
+
- type: recall_at_3
|
1261 |
+
value: 38.879000000000005
|
1262 |
+
- type: recall_at_5
|
1263 |
+
value: 44.651999999999994
|
1264 |
+
- task:
|
1265 |
+
type: Retrieval
|
1266 |
+
dataset:
|
1267 |
+
type: fiqa
|
1268 |
+
name: MTEB FiQA2018
|
1269 |
+
config: default
|
1270 |
+
split: test
|
1271 |
+
metrics:
|
1272 |
+
- type: map_at_1
|
1273 |
+
value: 9.142
|
1274 |
+
- type: map_at_10
|
1275 |
+
value: 13.841999999999999
|
1276 |
+
- type: map_at_100
|
1277 |
+
value: 14.960999999999999
|
1278 |
+
- type: map_at_1000
|
1279 |
+
value: 15.187000000000001
|
1280 |
+
- type: map_at_3
|
1281 |
+
value: 11.966000000000001
|
1282 |
+
- type: map_at_5
|
1283 |
+
value: 12.921
|
1284 |
+
- type: ndcg_at_1
|
1285 |
+
value: 18.364
|
1286 |
+
- type: ndcg_at_10
|
1287 |
+
value: 18.590999999999998
|
1288 |
+
- type: ndcg_at_100
|
1289 |
+
value: 24.153
|
1290 |
+
- type: ndcg_at_1000
|
1291 |
+
value: 29.104000000000003
|
1292 |
+
- type: ndcg_at_3
|
1293 |
+
value: 16.323
|
1294 |
+
- type: ndcg_at_5
|
1295 |
+
value: 17.000999999999998
|
1296 |
+
- type: precision_at_1
|
1297 |
+
value: 18.364
|
1298 |
+
- type: precision_at_10
|
1299 |
+
value: 5.216
|
1300 |
+
- type: precision_at_100
|
1301 |
+
value: 1.09
|
1302 |
+
- type: precision_at_1000
|
1303 |
+
value: 0.193
|
1304 |
+
- type: precision_at_3
|
1305 |
+
value: 10.751
|
1306 |
+
- type: precision_at_5
|
1307 |
+
value: 7.932
|
1308 |
+
- type: recall_at_1
|
1309 |
+
value: 9.142
|
1310 |
+
- type: recall_at_10
|
1311 |
+
value: 22.747
|
1312 |
+
- type: recall_at_100
|
1313 |
+
value: 44.585
|
1314 |
+
- type: recall_at_1000
|
1315 |
+
value: 75.481
|
1316 |
+
- type: recall_at_3
|
1317 |
+
value: 14.602
|
1318 |
+
- type: recall_at_5
|
1319 |
+
value: 17.957
|
1320 |
+
- task:
|
1321 |
+
type: Retrieval
|
1322 |
+
dataset:
|
1323 |
+
type: hotpotqa
|
1324 |
+
name: MTEB HotpotQA
|
1325 |
+
config: default
|
1326 |
+
split: test
|
1327 |
+
metrics:
|
1328 |
+
- type: map_at_1
|
1329 |
+
value: 18.677
|
1330 |
+
- type: map_at_10
|
1331 |
+
value: 26.616
|
1332 |
+
- type: map_at_100
|
1333 |
+
value: 27.605
|
1334 |
+
- type: map_at_1000
|
1335 |
+
value: 27.711999999999996
|
1336 |
+
- type: map_at_3
|
1337 |
+
value: 24.396
|
1338 |
+
- type: map_at_5
|
1339 |
+
value: 25.627
|
1340 |
+
- type: ndcg_at_1
|
1341 |
+
value: 37.352999999999994
|
1342 |
+
- type: ndcg_at_10
|
1343 |
+
value: 33.995
|
1344 |
+
- type: ndcg_at_100
|
1345 |
+
value: 38.423
|
1346 |
+
- type: ndcg_at_1000
|
1347 |
+
value: 40.947
|
1348 |
+
- type: ndcg_at_3
|
1349 |
+
value: 29.885
|
1350 |
+
- type: ndcg_at_5
|
1351 |
+
value: 31.874999999999996
|
1352 |
+
- type: precision_at_1
|
1353 |
+
value: 37.352999999999994
|
1354 |
+
- type: precision_at_10
|
1355 |
+
value: 7.539999999999999
|
1356 |
+
- type: precision_at_100
|
1357 |
+
value: 1.107
|
1358 |
+
- type: precision_at_1000
|
1359 |
+
value: 0.145
|
1360 |
+
- type: precision_at_3
|
1361 |
+
value: 18.938
|
1362 |
+
- type: precision_at_5
|
1363 |
+
value: 12.943
|
1364 |
+
- type: recall_at_1
|
1365 |
+
value: 18.677
|
1366 |
+
- type: recall_at_10
|
1367 |
+
value: 37.698
|
1368 |
+
- type: recall_at_100
|
1369 |
+
value: 55.354000000000006
|
1370 |
+
- type: recall_at_1000
|
1371 |
+
value: 72.255
|
1372 |
+
- type: recall_at_3
|
1373 |
+
value: 28.406
|
1374 |
+
- type: recall_at_5
|
1375 |
+
value: 32.357
|
1376 |
+
- task:
|
1377 |
+
type: Classification
|
1378 |
+
dataset:
|
1379 |
+
type: mteb/imdb
|
1380 |
+
name: MTEB ImdbClassification
|
1381 |
+
config: default
|
1382 |
+
split: test
|
1383 |
+
metrics:
|
1384 |
+
- type: accuracy
|
1385 |
+
value: 74.3292
|
1386 |
+
- type: ap
|
1387 |
+
value: 68.30186110189658
|
1388 |
+
- type: f1
|
1389 |
+
value: 74.20709636944783
|
1390 |
+
- task:
|
1391 |
+
type: Retrieval
|
1392 |
+
dataset:
|
1393 |
+
type: msmarco
|
1394 |
+
name: MTEB MSMARCO
|
1395 |
+
config: default
|
1396 |
+
split: validation
|
1397 |
+
metrics:
|
1398 |
+
- type: map_at_1
|
1399 |
+
value: 6.889000000000001
|
1400 |
+
- type: map_at_10
|
1401 |
+
value: 12.321
|
1402 |
+
- type: map_at_100
|
1403 |
+
value: 13.416
|
1404 |
+
- type: map_at_1000
|
1405 |
+
value: 13.525
|
1406 |
+
- type: map_at_3
|
1407 |
+
value: 10.205
|
1408 |
+
- type: map_at_5
|
1409 |
+
value: 11.342
|
1410 |
+
- type: ndcg_at_1
|
1411 |
+
value: 7.092
|
1412 |
+
- type: ndcg_at_10
|
1413 |
+
value: 15.827
|
1414 |
+
- type: ndcg_at_100
|
1415 |
+
value: 21.72
|
1416 |
+
- type: ndcg_at_1000
|
1417 |
+
value: 24.836
|
1418 |
+
- type: ndcg_at_3
|
1419 |
+
value: 11.393
|
1420 |
+
- type: ndcg_at_5
|
1421 |
+
value: 13.462
|
1422 |
+
- type: precision_at_1
|
1423 |
+
value: 7.092
|
1424 |
+
- type: precision_at_10
|
1425 |
+
value: 2.7969999999999997
|
1426 |
+
- type: precision_at_100
|
1427 |
+
value: 0.583
|
1428 |
+
- type: precision_at_1000
|
1429 |
+
value: 0.08499999999999999
|
1430 |
+
- type: precision_at_3
|
1431 |
+
value: 5.019
|
1432 |
+
- type: precision_at_5
|
1433 |
+
value: 4.06
|
1434 |
+
- type: recall_at_1
|
1435 |
+
value: 6.889000000000001
|
1436 |
+
- type: recall_at_10
|
1437 |
+
value: 26.791999999999998
|
1438 |
+
- type: recall_at_100
|
1439 |
+
value: 55.371
|
1440 |
+
- type: recall_at_1000
|
1441 |
+
value: 80.12899999999999
|
1442 |
+
- type: recall_at_3
|
1443 |
+
value: 14.573
|
1444 |
+
- type: recall_at_5
|
1445 |
+
value: 19.557
|
1446 |
+
- task:
|
1447 |
+
type: Classification
|
1448 |
+
dataset:
|
1449 |
+
type: mteb/mtop_domain
|
1450 |
+
name: MTEB MTOPDomainClassification (en)
|
1451 |
+
config: en
|
1452 |
+
split: test
|
1453 |
+
metrics:
|
1454 |
+
- type: accuracy
|
1455 |
+
value: 89.6374829001368
|
1456 |
+
- type: f1
|
1457 |
+
value: 89.20878379358307
|
1458 |
+
- task:
|
1459 |
+
type: Classification
|
1460 |
+
dataset:
|
1461 |
+
type: mteb/mtop_domain
|
1462 |
+
name: MTEB MTOPDomainClassification (de)
|
1463 |
+
config: de
|
1464 |
+
split: test
|
1465 |
+
metrics:
|
1466 |
+
- type: accuracy
|
1467 |
+
value: 84.54212454212454
|
1468 |
+
- type: f1
|
1469 |
+
value: 82.81080100037023
|
1470 |
+
- task:
|
1471 |
+
type: Classification
|
1472 |
+
dataset:
|
1473 |
+
type: mteb/mtop_domain
|
1474 |
+
name: MTEB MTOPDomainClassification (es)
|
1475 |
+
config: es
|
1476 |
+
split: test
|
1477 |
+
metrics:
|
1478 |
+
- type: accuracy
|
1479 |
+
value: 86.46430953969313
|
1480 |
+
- type: f1
|
1481 |
+
value: 86.00019824223267
|
1482 |
+
- task:
|
1483 |
+
type: Classification
|
1484 |
+
dataset:
|
1485 |
+
type: mteb/mtop_domain
|
1486 |
+
name: MTEB MTOPDomainClassification (fr)
|
1487 |
+
config: fr
|
1488 |
+
split: test
|
1489 |
+
metrics:
|
1490 |
+
- type: accuracy
|
1491 |
+
value: 81.31850923896022
|
1492 |
+
- type: f1
|
1493 |
+
value: 81.07860454762863
|
1494 |
+
- task:
|
1495 |
+
type: Classification
|
1496 |
+
dataset:
|
1497 |
+
type: mteb/mtop_domain
|
1498 |
+
name: MTEB MTOPDomainClassification (hi)
|
1499 |
+
config: hi
|
1500 |
+
split: test
|
1501 |
+
metrics:
|
1502 |
+
- type: accuracy
|
1503 |
+
value: 58.23234134098243
|
1504 |
+
- type: f1
|
1505 |
+
value: 56.63845098081841
|
1506 |
+
- task:
|
1507 |
+
type: Classification
|
1508 |
+
dataset:
|
1509 |
+
type: mteb/mtop_domain
|
1510 |
+
name: MTEB MTOPDomainClassification (th)
|
1511 |
+
config: th
|
1512 |
+
split: test
|
1513 |
+
metrics:
|
1514 |
+
- type: accuracy
|
1515 |
+
value: 72.28571428571429
|
1516 |
+
- type: f1
|
1517 |
+
value: 70.95796714592039
|
1518 |
+
- task:
|
1519 |
+
type: Classification
|
1520 |
+
dataset:
|
1521 |
+
type: mteb/mtop_intent
|
1522 |
+
name: MTEB MTOPIntentClassification (en)
|
1523 |
+
config: en
|
1524 |
+
split: test
|
1525 |
+
metrics:
|
1526 |
+
- type: accuracy
|
1527 |
+
value: 70.68171454628363
|
1528 |
+
- type: f1
|
1529 |
+
value: 52.57188062729139
|
1530 |
+
- task:
|
1531 |
+
type: Classification
|
1532 |
+
dataset:
|
1533 |
+
type: mteb/mtop_intent
|
1534 |
+
name: MTEB MTOPIntentClassification (de)
|
1535 |
+
config: de
|
1536 |
+
split: test
|
1537 |
+
metrics:
|
1538 |
+
- type: accuracy
|
1539 |
+
value: 60.521273598196665
|
1540 |
+
- type: f1
|
1541 |
+
value: 42.70492970339204
|
1542 |
+
- task:
|
1543 |
+
type: Classification
|
1544 |
+
dataset:
|
1545 |
+
type: mteb/mtop_intent
|
1546 |
+
name: MTEB MTOPIntentClassification (es)
|
1547 |
+
config: es
|
1548 |
+
split: test
|
1549 |
+
metrics:
|
1550 |
+
- type: accuracy
|
1551 |
+
value: 64.32288192128087
|
1552 |
+
- type: f1
|
1553 |
+
value: 45.97360620220273
|
1554 |
+
- task:
|
1555 |
+
type: Classification
|
1556 |
+
dataset:
|
1557 |
+
type: mteb/mtop_intent
|
1558 |
+
name: MTEB MTOPIntentClassification (fr)
|
1559 |
+
config: fr
|
1560 |
+
split: test
|
1561 |
+
metrics:
|
1562 |
+
- type: accuracy
|
1563 |
+
value: 58.67209520826808
|
1564 |
+
- type: f1
|
1565 |
+
value: 42.82844991304579
|
1566 |
+
- task:
|
1567 |
+
type: Classification
|
1568 |
+
dataset:
|
1569 |
+
type: mteb/mtop_intent
|
1570 |
+
name: MTEB MTOPIntentClassification (hi)
|
1571 |
+
config: hi
|
1572 |
+
split: test
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 41.95769092864826
|
1576 |
+
- type: f1
|
1577 |
+
value: 28.914127631431263
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/mtop_intent
|
1582 |
+
name: MTEB MTOPIntentClassification (th)
|
1583 |
+
config: th
|
1584 |
+
split: test
|
1585 |
+
metrics:
|
1586 |
+
- type: accuracy
|
1587 |
+
value: 55.28390596745027
|
1588 |
+
- type: f1
|
1589 |
+
value: 38.33899250561289
|
1590 |
+
- task:
|
1591 |
+
type: Classification
|
1592 |
+
dataset:
|
1593 |
+
type: mteb/amazon_massive_intent
|
1594 |
+
name: MTEB MassiveIntentClassification (en)
|
1595 |
+
config: en
|
1596 |
+
split: test
|
1597 |
+
metrics:
|
1598 |
+
- type: accuracy
|
1599 |
+
value: 70.00336247478144
|
1600 |
+
- type: f1
|
1601 |
+
value: 68.72041942191649
|
1602 |
+
- task:
|
1603 |
+
type: Classification
|
1604 |
+
dataset:
|
1605 |
+
type: mteb/amazon_massive_scenario
|
1606 |
+
name: MTEB MassiveScenarioClassification (en)
|
1607 |
+
config: en
|
1608 |
+
split: test
|
1609 |
+
metrics:
|
1610 |
+
- type: accuracy
|
1611 |
+
value: 75.0268997982515
|
1612 |
+
- type: f1
|
1613 |
+
value: 75.29844481506652
|
1614 |
+
- task:
|
1615 |
+
type: Clustering
|
1616 |
+
dataset:
|
1617 |
+
type: mteb/medrxiv-clustering-p2p
|
1618 |
+
name: MTEB MedrxivClusteringP2P
|
1619 |
+
config: default
|
1620 |
+
split: test
|
1621 |
+
metrics:
|
1622 |
+
- type: v_measure
|
1623 |
+
value: 30.327566856300813
|
1624 |
+
- task:
|
1625 |
+
type: Clustering
|
1626 |
+
dataset:
|
1627 |
+
type: mteb/medrxiv-clustering-s2s
|
1628 |
+
name: MTEB MedrxivClusteringS2S
|
1629 |
+
config: default
|
1630 |
+
split: test
|
1631 |
+
metrics:
|
1632 |
+
- type: v_measure
|
1633 |
+
value: 28.01650210863619
|
1634 |
+
- task:
|
1635 |
+
type: Reranking
|
1636 |
+
dataset:
|
1637 |
+
type: mteb/mind_small
|
1638 |
+
name: MTEB MindSmallReranking
|
1639 |
+
config: default
|
1640 |
+
split: test
|
1641 |
+
metrics:
|
1642 |
+
- type: map
|
1643 |
+
value: 31.11041256752524
|
1644 |
+
- type: mrr
|
1645 |
+
value: 32.14172939750204
|
1646 |
+
- task:
|
1647 |
+
type: Retrieval
|
1648 |
+
dataset:
|
1649 |
+
type: nfcorpus
|
1650 |
+
name: MTEB NFCorpus
|
1651 |
+
config: default
|
1652 |
+
split: test
|
1653 |
+
metrics:
|
1654 |
+
- type: map_at_1
|
1655 |
+
value: 3.527
|
1656 |
+
- type: map_at_10
|
1657 |
+
value: 9.283
|
1658 |
+
- type: map_at_100
|
1659 |
+
value: 11.995000000000001
|
1660 |
+
- type: map_at_1000
|
1661 |
+
value: 13.33
|
1662 |
+
- type: map_at_3
|
1663 |
+
value: 6.223
|
1664 |
+
- type: map_at_5
|
1665 |
+
value: 7.68
|
1666 |
+
- type: ndcg_at_1
|
1667 |
+
value: 36.223
|
1668 |
+
- type: ndcg_at_10
|
1669 |
+
value: 28.255999999999997
|
1670 |
+
- type: ndcg_at_100
|
1671 |
+
value: 26.355
|
1672 |
+
- type: ndcg_at_1000
|
1673 |
+
value: 35.536
|
1674 |
+
- type: ndcg_at_3
|
1675 |
+
value: 31.962000000000003
|
1676 |
+
- type: ndcg_at_5
|
1677 |
+
value: 30.61
|
1678 |
+
- type: precision_at_1
|
1679 |
+
value: 37.771
|
1680 |
+
- type: precision_at_10
|
1681 |
+
value: 21.889
|
1682 |
+
- type: precision_at_100
|
1683 |
+
value: 7.1080000000000005
|
1684 |
+
- type: precision_at_1000
|
1685 |
+
value: 1.989
|
1686 |
+
- type: precision_at_3
|
1687 |
+
value: 30.857
|
1688 |
+
- type: precision_at_5
|
1689 |
+
value: 27.307
|
1690 |
+
- type: recall_at_1
|
1691 |
+
value: 3.527
|
1692 |
+
- type: recall_at_10
|
1693 |
+
value: 14.015
|
1694 |
+
- type: recall_at_100
|
1695 |
+
value: 28.402
|
1696 |
+
- type: recall_at_1000
|
1697 |
+
value: 59.795
|
1698 |
+
- type: recall_at_3
|
1699 |
+
value: 7.5969999999999995
|
1700 |
+
- type: recall_at_5
|
1701 |
+
value: 10.641
|
1702 |
+
- task:
|
1703 |
+
type: Retrieval
|
1704 |
+
dataset:
|
1705 |
+
type: nq
|
1706 |
+
name: MTEB NQ
|
1707 |
+
config: default
|
1708 |
+
split: test
|
1709 |
+
metrics:
|
1710 |
+
- type: map_at_1
|
1711 |
+
value: 11.631
|
1712 |
+
- type: map_at_10
|
1713 |
+
value: 19.532
|
1714 |
+
- type: map_at_100
|
1715 |
+
value: 20.821
|
1716 |
+
- type: map_at_1000
|
1717 |
+
value: 20.910999999999998
|
1718 |
+
- type: map_at_3
|
1719 |
+
value: 16.597
|
1720 |
+
- type: map_at_5
|
1721 |
+
value: 18.197
|
1722 |
+
- type: ndcg_at_1
|
1723 |
+
value: 13.413
|
1724 |
+
- type: ndcg_at_10
|
1725 |
+
value: 24.628
|
1726 |
+
- type: ndcg_at_100
|
1727 |
+
value: 30.883
|
1728 |
+
- type: ndcg_at_1000
|
1729 |
+
value: 33.216
|
1730 |
+
- type: ndcg_at_3
|
1731 |
+
value: 18.697
|
1732 |
+
- type: ndcg_at_5
|
1733 |
+
value: 21.501
|
1734 |
+
- type: precision_at_1
|
1735 |
+
value: 13.413
|
1736 |
+
- type: precision_at_10
|
1737 |
+
value: 4.571
|
1738 |
+
- type: precision_at_100
|
1739 |
+
value: 0.812
|
1740 |
+
- type: precision_at_1000
|
1741 |
+
value: 0.10300000000000001
|
1742 |
+
- type: precision_at_3
|
1743 |
+
value: 8.845
|
1744 |
+
- type: precision_at_5
|
1745 |
+
value: 6.889000000000001
|
1746 |
+
- type: recall_at_1
|
1747 |
+
value: 11.631
|
1748 |
+
- type: recall_at_10
|
1749 |
+
value: 38.429
|
1750 |
+
- type: recall_at_100
|
1751 |
+
value: 67.009
|
1752 |
+
- type: recall_at_1000
|
1753 |
+
value: 84.796
|
1754 |
+
- type: recall_at_3
|
1755 |
+
value: 22.74
|
1756 |
+
- type: recall_at_5
|
1757 |
+
value: 29.266
|
1758 |
+
- task:
|
1759 |
+
type: Retrieval
|
1760 |
+
dataset:
|
1761 |
+
type: quora
|
1762 |
+
name: MTEB QuoraRetrieval
|
1763 |
+
config: default
|
1764 |
+
split: test
|
1765 |
+
metrics:
|
1766 |
+
- type: map_at_1
|
1767 |
+
value: 66.64
|
1768 |
+
- type: map_at_10
|
1769 |
+
value: 80.394
|
1770 |
+
- type: map_at_100
|
1771 |
+
value: 81.099
|
1772 |
+
- type: map_at_1000
|
1773 |
+
value: 81.122
|
1774 |
+
- type: map_at_3
|
1775 |
+
value: 77.289
|
1776 |
+
- type: map_at_5
|
1777 |
+
value: 79.25999999999999
|
1778 |
+
- type: ndcg_at_1
|
1779 |
+
value: 76.85
|
1780 |
+
- type: ndcg_at_10
|
1781 |
+
value: 84.68
|
1782 |
+
- type: ndcg_at_100
|
1783 |
+
value: 86.311
|
1784 |
+
- type: ndcg_at_1000
|
1785 |
+
value: 86.49900000000001
|
1786 |
+
- type: ndcg_at_3
|
1787 |
+
value: 81.295
|
1788 |
+
- type: ndcg_at_5
|
1789 |
+
value: 83.199
|
1790 |
+
- type: precision_at_1
|
1791 |
+
value: 76.85
|
1792 |
+
- type: precision_at_10
|
1793 |
+
value: 12.928999999999998
|
1794 |
+
- type: precision_at_100
|
1795 |
+
value: 1.51
|
1796 |
+
- type: precision_at_1000
|
1797 |
+
value: 0.156
|
1798 |
+
- type: precision_at_3
|
1799 |
+
value: 35.557
|
1800 |
+
- type: precision_at_5
|
1801 |
+
value: 23.576
|
1802 |
+
- type: recall_at_1
|
1803 |
+
value: 66.64
|
1804 |
+
- type: recall_at_10
|
1805 |
+
value: 93.059
|
1806 |
+
- type: recall_at_100
|
1807 |
+
value: 98.922
|
1808 |
+
- type: recall_at_1000
|
1809 |
+
value: 99.883
|
1810 |
+
- type: recall_at_3
|
1811 |
+
value: 83.49499999999999
|
1812 |
+
- type: recall_at_5
|
1813 |
+
value: 88.729
|
1814 |
+
- task:
|
1815 |
+
type: Clustering
|
1816 |
+
dataset:
|
1817 |
+
type: mteb/reddit-clustering
|
1818 |
+
name: MTEB RedditClustering
|
1819 |
+
config: default
|
1820 |
+
split: test
|
1821 |
+
metrics:
|
1822 |
+
- type: v_measure
|
1823 |
+
value: 42.17131361041068
|
1824 |
+
- task:
|
1825 |
+
type: Clustering
|
1826 |
+
dataset:
|
1827 |
+
type: mteb/reddit-clustering-p2p
|
1828 |
+
name: MTEB RedditClusteringP2P
|
1829 |
+
config: default
|
1830 |
+
split: test
|
1831 |
+
metrics:
|
1832 |
+
- type: v_measure
|
1833 |
+
value: 48.01815621479994
|
1834 |
+
- task:
|
1835 |
+
type: Retrieval
|
1836 |
+
dataset:
|
1837 |
+
type: scidocs
|
1838 |
+
name: MTEB SCIDOCS
|
1839 |
+
config: default
|
1840 |
+
split: test
|
1841 |
+
metrics:
|
1842 |
+
- type: map_at_1
|
1843 |
+
value: 3.198
|
1844 |
+
- type: map_at_10
|
1845 |
+
value: 7.550999999999999
|
1846 |
+
- type: map_at_100
|
1847 |
+
value: 9.232
|
1848 |
+
- type: map_at_1000
|
1849 |
+
value: 9.51
|
1850 |
+
- type: map_at_3
|
1851 |
+
value: 5.2940000000000005
|
1852 |
+
- type: map_at_5
|
1853 |
+
value: 6.343999999999999
|
1854 |
+
- type: ndcg_at_1
|
1855 |
+
value: 15.8
|
1856 |
+
- type: ndcg_at_10
|
1857 |
+
value: 13.553999999999998
|
1858 |
+
- type: ndcg_at_100
|
1859 |
+
value: 20.776
|
1860 |
+
- type: ndcg_at_1000
|
1861 |
+
value: 26.204
|
1862 |
+
- type: ndcg_at_3
|
1863 |
+
value: 12.306000000000001
|
1864 |
+
- type: ndcg_at_5
|
1865 |
+
value: 10.952
|
1866 |
+
- type: precision_at_1
|
1867 |
+
value: 15.8
|
1868 |
+
- type: precision_at_10
|
1869 |
+
value: 7.180000000000001
|
1870 |
+
- type: precision_at_100
|
1871 |
+
value: 1.762
|
1872 |
+
- type: precision_at_1000
|
1873 |
+
value: 0.307
|
1874 |
+
- type: precision_at_3
|
1875 |
+
value: 11.333
|
1876 |
+
- type: precision_at_5
|
1877 |
+
value: 9.62
|
1878 |
+
- type: recall_at_1
|
1879 |
+
value: 3.198
|
1880 |
+
- type: recall_at_10
|
1881 |
+
value: 14.575
|
1882 |
+
- type: recall_at_100
|
1883 |
+
value: 35.758
|
1884 |
+
- type: recall_at_1000
|
1885 |
+
value: 62.317
|
1886 |
+
- type: recall_at_3
|
1887 |
+
value: 6.922000000000001
|
1888 |
+
- type: recall_at_5
|
1889 |
+
value: 9.767000000000001
|
1890 |
+
- task:
|
1891 |
+
type: STS
|
1892 |
+
dataset:
|
1893 |
+
type: mteb/sickr-sts
|
1894 |
+
name: MTEB SICK-R
|
1895 |
+
config: default
|
1896 |
+
split: test
|
1897 |
+
metrics:
|
1898 |
+
- type: cos_sim_pearson
|
1899 |
+
value: 84.5217161312271
|
1900 |
+
- type: cos_sim_spearman
|
1901 |
+
value: 79.58562467776268
|
1902 |
+
- type: euclidean_pearson
|
1903 |
+
value: 76.69364353942403
|
1904 |
+
- type: euclidean_spearman
|
1905 |
+
value: 74.68959282070473
|
1906 |
+
- type: manhattan_pearson
|
1907 |
+
value: 76.81159265133732
|
1908 |
+
- type: manhattan_spearman
|
1909 |
+
value: 74.7519444048176
|
1910 |
+
- task:
|
1911 |
+
type: STS
|
1912 |
+
dataset:
|
1913 |
+
type: mteb/sts12-sts
|
1914 |
+
name: MTEB STS12
|
1915 |
+
config: default
|
1916 |
+
split: test
|
1917 |
+
metrics:
|
1918 |
+
- type: cos_sim_pearson
|
1919 |
+
value: 83.70403706922605
|
1920 |
+
- type: cos_sim_spearman
|
1921 |
+
value: 74.28502198729447
|
1922 |
+
- type: euclidean_pearson
|
1923 |
+
value: 83.32719404608066
|
1924 |
+
- type: euclidean_spearman
|
1925 |
+
value: 75.92189433460788
|
1926 |
+
- type: manhattan_pearson
|
1927 |
+
value: 83.35841543005293
|
1928 |
+
- type: manhattan_spearman
|
1929 |
+
value: 75.94458615451978
|
1930 |
+
- task:
|
1931 |
+
type: STS
|
1932 |
+
dataset:
|
1933 |
+
type: mteb/sts13-sts
|
1934 |
+
name: MTEB STS13
|
1935 |
+
config: default
|
1936 |
+
split: test
|
1937 |
+
metrics:
|
1938 |
+
- type: cos_sim_pearson
|
1939 |
+
value: 84.94127878986795
|
1940 |
+
- type: cos_sim_spearman
|
1941 |
+
value: 85.35148434923192
|
1942 |
+
- type: euclidean_pearson
|
1943 |
+
value: 81.71127467071571
|
1944 |
+
- type: euclidean_spearman
|
1945 |
+
value: 82.88240481546771
|
1946 |
+
- type: manhattan_pearson
|
1947 |
+
value: 81.72826221967252
|
1948 |
+
- type: manhattan_spearman
|
1949 |
+
value: 82.90725064625128
|
1950 |
+
- task:
|
1951 |
+
type: STS
|
1952 |
+
dataset:
|
1953 |
+
type: mteb/sts14-sts
|
1954 |
+
name: MTEB STS14
|
1955 |
+
config: default
|
1956 |
+
split: test
|
1957 |
+
metrics:
|
1958 |
+
- type: cos_sim_pearson
|
1959 |
+
value: 83.1474704168523
|
1960 |
+
- type: cos_sim_spearman
|
1961 |
+
value: 79.20612995350827
|
1962 |
+
- type: euclidean_pearson
|
1963 |
+
value: 78.85993329596555
|
1964 |
+
- type: euclidean_spearman
|
1965 |
+
value: 78.91956572744715
|
1966 |
+
- type: manhattan_pearson
|
1967 |
+
value: 78.89999720522347
|
1968 |
+
- type: manhattan_spearman
|
1969 |
+
value: 78.93956842550107
|
1970 |
+
- task:
|
1971 |
+
type: STS
|
1972 |
+
dataset:
|
1973 |
+
type: mteb/sts15-sts
|
1974 |
+
name: MTEB STS15
|
1975 |
+
config: default
|
1976 |
+
split: test
|
1977 |
+
metrics:
|
1978 |
+
- type: cos_sim_pearson
|
1979 |
+
value: 84.81255514055894
|
1980 |
+
- type: cos_sim_spearman
|
1981 |
+
value: 85.5217140762934
|
1982 |
+
- type: euclidean_pearson
|
1983 |
+
value: 82.15024353784499
|
1984 |
+
- type: euclidean_spearman
|
1985 |
+
value: 83.04155334389833
|
1986 |
+
- type: manhattan_pearson
|
1987 |
+
value: 82.18598945053624
|
1988 |
+
- type: manhattan_spearman
|
1989 |
+
value: 83.07248357693301
|
1990 |
+
- task:
|
1991 |
+
type: STS
|
1992 |
+
dataset:
|
1993 |
+
type: mteb/sts16-sts
|
1994 |
+
name: MTEB STS16
|
1995 |
+
config: default
|
1996 |
+
split: test
|
1997 |
+
metrics:
|
1998 |
+
- type: cos_sim_pearson
|
1999 |
+
value: 80.63248465157822
|
2000 |
+
- type: cos_sim_spearman
|
2001 |
+
value: 82.53853238521991
|
2002 |
+
- type: euclidean_pearson
|
2003 |
+
value: 78.33936863828221
|
2004 |
+
- type: euclidean_spearman
|
2005 |
+
value: 79.16305579487414
|
2006 |
+
- type: manhattan_pearson
|
2007 |
+
value: 78.3888359870894
|
2008 |
+
- type: manhattan_spearman
|
2009 |
+
value: 79.18504473136467
|
2010 |
+
- task:
|
2011 |
+
type: STS
|
2012 |
+
dataset:
|
2013 |
+
type: mteb/sts17-crosslingual-sts
|
2014 |
+
name: MTEB STS17 (en-en)
|
2015 |
+
config: en-en
|
2016 |
+
split: test
|
2017 |
+
metrics:
|
2018 |
+
- type: cos_sim_pearson
|
2019 |
+
value: 90.09066290639687
|
2020 |
+
- type: cos_sim_spearman
|
2021 |
+
value: 90.43893699357069
|
2022 |
+
- type: euclidean_pearson
|
2023 |
+
value: 82.39520777222396
|
2024 |
+
- type: euclidean_spearman
|
2025 |
+
value: 81.23948185395952
|
2026 |
+
- type: manhattan_pearson
|
2027 |
+
value: 82.35529784653383
|
2028 |
+
- type: manhattan_spearman
|
2029 |
+
value: 81.12681522483975
|
2030 |
+
- task:
|
2031 |
+
type: STS
|
2032 |
+
dataset:
|
2033 |
+
type: mteb/sts22-crosslingual-sts
|
2034 |
+
name: MTEB STS22 (en)
|
2035 |
+
config: en
|
2036 |
+
split: test
|
2037 |
+
metrics:
|
2038 |
+
- type: cos_sim_pearson
|
2039 |
+
value: 63.52752323046846
|
2040 |
+
- type: cos_sim_spearman
|
2041 |
+
value: 63.19719780439462
|
2042 |
+
- type: euclidean_pearson
|
2043 |
+
value: 58.29085490641428
|
2044 |
+
- type: euclidean_spearman
|
2045 |
+
value: 58.975178656335046
|
2046 |
+
- type: manhattan_pearson
|
2047 |
+
value: 58.183542772416985
|
2048 |
+
- type: manhattan_spearman
|
2049 |
+
value: 59.190630462178994
|
2050 |
+
- task:
|
2051 |
+
type: STS
|
2052 |
+
dataset:
|
2053 |
+
type: mteb/stsbenchmark-sts
|
2054 |
+
name: MTEB STSBenchmark
|
2055 |
+
config: default
|
2056 |
+
split: test
|
2057 |
+
metrics:
|
2058 |
+
- type: cos_sim_pearson
|
2059 |
+
value: 85.45100366635687
|
2060 |
+
- type: cos_sim_spearman
|
2061 |
+
value: 85.66816193002651
|
2062 |
+
- type: euclidean_pearson
|
2063 |
+
value: 81.87976731329091
|
2064 |
+
- type: euclidean_spearman
|
2065 |
+
value: 82.01382867690964
|
2066 |
+
- type: manhattan_pearson
|
2067 |
+
value: 81.88260155706726
|
2068 |
+
- type: manhattan_spearman
|
2069 |
+
value: 82.05258597906492
|
2070 |
+
- task:
|
2071 |
+
type: Reranking
|
2072 |
+
dataset:
|
2073 |
+
type: mteb/scidocs-reranking
|
2074 |
+
name: MTEB SciDocsRR
|
2075 |
+
config: default
|
2076 |
+
split: test
|
2077 |
+
metrics:
|
2078 |
+
- type: map
|
2079 |
+
value: 77.53549990038017
|
2080 |
+
- type: mrr
|
2081 |
+
value: 93.37474163454556
|
2082 |
+
- task:
|
2083 |
+
type: Retrieval
|
2084 |
+
dataset:
|
2085 |
+
type: scifact
|
2086 |
+
name: MTEB SciFact
|
2087 |
+
config: default
|
2088 |
+
split: test
|
2089 |
+
metrics:
|
2090 |
+
- type: map_at_1
|
2091 |
+
value: 31.167
|
2092 |
+
- type: map_at_10
|
2093 |
+
value: 40.778
|
2094 |
+
- type: map_at_100
|
2095 |
+
value: 42.063
|
2096 |
+
- type: map_at_1000
|
2097 |
+
value: 42.103
|
2098 |
+
- type: map_at_3
|
2099 |
+
value: 37.12
|
2100 |
+
- type: map_at_5
|
2101 |
+
value: 39.205
|
2102 |
+
- type: ndcg_at_1
|
2103 |
+
value: 33.667
|
2104 |
+
- type: ndcg_at_10
|
2105 |
+
value: 46.662
|
2106 |
+
- type: ndcg_at_100
|
2107 |
+
value: 51.995999999999995
|
2108 |
+
- type: ndcg_at_1000
|
2109 |
+
value: 53.254999999999995
|
2110 |
+
- type: ndcg_at_3
|
2111 |
+
value: 39.397999999999996
|
2112 |
+
- type: ndcg_at_5
|
2113 |
+
value: 42.934
|
2114 |
+
- type: precision_at_1
|
2115 |
+
value: 33.667
|
2116 |
+
- type: precision_at_10
|
2117 |
+
value: 7.1
|
2118 |
+
- type: precision_at_100
|
2119 |
+
value: 0.993
|
2120 |
+
- type: precision_at_1000
|
2121 |
+
value: 0.11
|
2122 |
+
- type: precision_at_3
|
2123 |
+
value: 16.111
|
2124 |
+
- type: precision_at_5
|
2125 |
+
value: 11.600000000000001
|
2126 |
+
- type: recall_at_1
|
2127 |
+
value: 31.167
|
2128 |
+
- type: recall_at_10
|
2129 |
+
value: 63.744
|
2130 |
+
- type: recall_at_100
|
2131 |
+
value: 87.156
|
2132 |
+
- type: recall_at_1000
|
2133 |
+
value: 97.556
|
2134 |
+
- type: recall_at_3
|
2135 |
+
value: 44.0
|
2136 |
+
- type: recall_at_5
|
2137 |
+
value: 52.556000000000004
|
2138 |
+
- task:
|
2139 |
+
type: PairClassification
|
2140 |
+
dataset:
|
2141 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2142 |
+
name: MTEB SprintDuplicateQuestions
|
2143 |
+
config: default
|
2144 |
+
split: test
|
2145 |
+
metrics:
|
2146 |
+
- type: cos_sim_accuracy
|
2147 |
+
value: 99.55148514851486
|
2148 |
+
- type: cos_sim_ap
|
2149 |
+
value: 80.535236573428
|
2150 |
+
- type: cos_sim_f1
|
2151 |
+
value: 75.01331912626532
|
2152 |
+
- type: cos_sim_precision
|
2153 |
+
value: 80.27366020524515
|
2154 |
+
- type: cos_sim_recall
|
2155 |
+
value: 70.39999999999999
|
2156 |
+
- type: dot_accuracy
|
2157 |
+
value: 99.04851485148515
|
2158 |
+
- type: dot_ap
|
2159 |
+
value: 28.505358821499726
|
2160 |
+
- type: dot_f1
|
2161 |
+
value: 36.36363636363637
|
2162 |
+
- type: dot_precision
|
2163 |
+
value: 37.160751565762006
|
2164 |
+
- type: dot_recall
|
2165 |
+
value: 35.6
|
2166 |
+
- type: euclidean_accuracy
|
2167 |
+
value: 99.4990099009901
|
2168 |
+
- type: euclidean_ap
|
2169 |
+
value: 74.95819047075476
|
2170 |
+
- type: euclidean_f1
|
2171 |
+
value: 71.15489874110564
|
2172 |
+
- type: euclidean_precision
|
2173 |
+
value: 78.59733978234583
|
2174 |
+
- type: euclidean_recall
|
2175 |
+
value: 65.0
|
2176 |
+
- type: manhattan_accuracy
|
2177 |
+
value: 99.50198019801981
|
2178 |
+
- type: manhattan_ap
|
2179 |
+
value: 75.02070096015086
|
2180 |
+
- type: manhattan_f1
|
2181 |
+
value: 71.20535714285712
|
2182 |
+
- type: manhattan_precision
|
2183 |
+
value: 80.55555555555556
|
2184 |
+
- type: manhattan_recall
|
2185 |
+
value: 63.800000000000004
|
2186 |
+
- type: max_accuracy
|
2187 |
+
value: 99.55148514851486
|
2188 |
+
- type: max_ap
|
2189 |
+
value: 80.535236573428
|
2190 |
+
- type: max_f1
|
2191 |
+
value: 75.01331912626532
|
2192 |
+
- task:
|
2193 |
+
type: Clustering
|
2194 |
+
dataset:
|
2195 |
+
type: mteb/stackexchange-clustering
|
2196 |
+
name: MTEB StackExchangeClustering
|
2197 |
+
config: default
|
2198 |
+
split: test
|
2199 |
+
metrics:
|
2200 |
+
- type: v_measure
|
2201 |
+
value: 54.13314692311623
|
2202 |
+
- task:
|
2203 |
+
type: Clustering
|
2204 |
+
dataset:
|
2205 |
+
type: mteb/stackexchange-clustering-p2p
|
2206 |
+
name: MTEB StackExchangeClusteringP2P
|
2207 |
+
config: default
|
2208 |
+
split: test
|
2209 |
+
metrics:
|
2210 |
+
- type: v_measure
|
2211 |
+
value: 31.115181648287145
|
2212 |
+
- task:
|
2213 |
+
type: Reranking
|
2214 |
+
dataset:
|
2215 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2216 |
+
name: MTEB StackOverflowDupQuestions
|
2217 |
+
config: default
|
2218 |
+
split: test
|
2219 |
+
metrics:
|
2220 |
+
- type: map
|
2221 |
+
value: 44.771112666694336
|
2222 |
+
- type: mrr
|
2223 |
+
value: 45.30415764790765
|
2224 |
+
- task:
|
2225 |
+
type: Summarization
|
2226 |
+
dataset:
|
2227 |
+
type: mteb/summeval
|
2228 |
+
name: MTEB SummEval
|
2229 |
+
config: default
|
2230 |
+
split: test
|
2231 |
+
metrics:
|
2232 |
+
- type: cos_sim_pearson
|
2233 |
+
value: 30.849429597669374
|
2234 |
+
- type: cos_sim_spearman
|
2235 |
+
value: 30.384175038360194
|
2236 |
+
- type: dot_pearson
|
2237 |
+
value: 29.030383429536823
|
2238 |
+
- type: dot_spearman
|
2239 |
+
value: 28.03273624951732
|
2240 |
+
- task:
|
2241 |
+
type: Retrieval
|
2242 |
+
dataset:
|
2243 |
+
type: trec-covid
|
2244 |
+
name: MTEB TRECCOVID
|
2245 |
+
config: default
|
2246 |
+
split: test
|
2247 |
+
metrics:
|
2248 |
+
- type: map_at_1
|
2249 |
+
value: 0.19499999999999998
|
2250 |
+
- type: map_at_10
|
2251 |
+
value: 1.0959999999999999
|
2252 |
+
- type: map_at_100
|
2253 |
+
value: 5.726
|
2254 |
+
- type: map_at_1000
|
2255 |
+
value: 13.611999999999998
|
2256 |
+
- type: map_at_3
|
2257 |
+
value: 0.45399999999999996
|
2258 |
+
- type: map_at_5
|
2259 |
+
value: 0.67
|
2260 |
+
- type: ndcg_at_1
|
2261 |
+
value: 71.0
|
2262 |
+
- type: ndcg_at_10
|
2263 |
+
value: 55.352999999999994
|
2264 |
+
- type: ndcg_at_100
|
2265 |
+
value: 40.797
|
2266 |
+
- type: ndcg_at_1000
|
2267 |
+
value: 35.955999999999996
|
2268 |
+
- type: ndcg_at_3
|
2269 |
+
value: 63.263000000000005
|
2270 |
+
- type: ndcg_at_5
|
2271 |
+
value: 60.14000000000001
|
2272 |
+
- type: precision_at_1
|
2273 |
+
value: 78.0
|
2274 |
+
- type: precision_at_10
|
2275 |
+
value: 56.99999999999999
|
2276 |
+
- type: precision_at_100
|
2277 |
+
value: 41.199999999999996
|
2278 |
+
- type: precision_at_1000
|
2279 |
+
value: 16.154
|
2280 |
+
- type: precision_at_3
|
2281 |
+
value: 66.667
|
2282 |
+
- type: precision_at_5
|
2283 |
+
value: 62.8
|
2284 |
+
- type: recall_at_1
|
2285 |
+
value: 0.19499999999999998
|
2286 |
+
- type: recall_at_10
|
2287 |
+
value: 1.3639999999999999
|
2288 |
+
- type: recall_at_100
|
2289 |
+
value: 9.317
|
2290 |
+
- type: recall_at_1000
|
2291 |
+
value: 33.629999999999995
|
2292 |
+
- type: recall_at_3
|
2293 |
+
value: 0.49300000000000005
|
2294 |
+
- type: recall_at_5
|
2295 |
+
value: 0.756
|
2296 |
+
- task:
|
2297 |
+
type: Retrieval
|
2298 |
+
dataset:
|
2299 |
+
type: webis-touche2020
|
2300 |
+
name: MTEB Touche2020
|
2301 |
+
config: default
|
2302 |
+
split: test
|
2303 |
+
metrics:
|
2304 |
+
- type: map_at_1
|
2305 |
+
value: 1.335
|
2306 |
+
- type: map_at_10
|
2307 |
+
value: 6.293
|
2308 |
+
- type: map_at_100
|
2309 |
+
value: 10.928
|
2310 |
+
- type: map_at_1000
|
2311 |
+
value: 12.359
|
2312 |
+
- type: map_at_3
|
2313 |
+
value: 3.472
|
2314 |
+
- type: map_at_5
|
2315 |
+
value: 4.935
|
2316 |
+
- type: ndcg_at_1
|
2317 |
+
value: 19.387999999999998
|
2318 |
+
- type: ndcg_at_10
|
2319 |
+
value: 16.178
|
2320 |
+
- type: ndcg_at_100
|
2321 |
+
value: 28.149
|
2322 |
+
- type: ndcg_at_1000
|
2323 |
+
value: 39.845000000000006
|
2324 |
+
- type: ndcg_at_3
|
2325 |
+
value: 19.171
|
2326 |
+
- type: ndcg_at_5
|
2327 |
+
value: 17.864
|
2328 |
+
- type: precision_at_1
|
2329 |
+
value: 20.408
|
2330 |
+
- type: precision_at_10
|
2331 |
+
value: 14.49
|
2332 |
+
- type: precision_at_100
|
2333 |
+
value: 6.306000000000001
|
2334 |
+
- type: precision_at_1000
|
2335 |
+
value: 1.3860000000000001
|
2336 |
+
- type: precision_at_3
|
2337 |
+
value: 21.088
|
2338 |
+
- type: precision_at_5
|
2339 |
+
value: 18.367
|
2340 |
+
- type: recall_at_1
|
2341 |
+
value: 1.335
|
2342 |
+
- type: recall_at_10
|
2343 |
+
value: 10.825999999999999
|
2344 |
+
- type: recall_at_100
|
2345 |
+
value: 39.251000000000005
|
2346 |
+
- type: recall_at_1000
|
2347 |
+
value: 74.952
|
2348 |
+
- type: recall_at_3
|
2349 |
+
value: 4.9110000000000005
|
2350 |
+
- type: recall_at_5
|
2351 |
+
value: 7.312
|
2352 |
+
- task:
|
2353 |
+
type: Classification
|
2354 |
+
dataset:
|
2355 |
+
type: mteb/toxic_conversations_50k
|
2356 |
+
name: MTEB ToxicConversationsClassification
|
2357 |
+
config: default
|
2358 |
+
split: test
|
2359 |
+
metrics:
|
2360 |
+
- type: accuracy
|
2361 |
+
value: 69.93339999999999
|
2362 |
+
- type: ap
|
2363 |
+
value: 13.87476602492533
|
2364 |
+
- type: f1
|
2365 |
+
value: 53.867357615848555
|
2366 |
+
- task:
|
2367 |
+
type: Classification
|
2368 |
+
dataset:
|
2369 |
+
type: mteb/tweet_sentiment_extraction
|
2370 |
+
name: MTEB TweetSentimentExtractionClassification
|
2371 |
+
config: default
|
2372 |
+
split: test
|
2373 |
+
metrics:
|
2374 |
+
- type: accuracy
|
2375 |
+
value: 62.43916242218449
|
2376 |
+
- type: f1
|
2377 |
+
value: 62.870386304954685
|
2378 |
+
- task:
|
2379 |
+
type: Clustering
|
2380 |
+
dataset:
|
2381 |
+
type: mteb/twentynewsgroups-clustering
|
2382 |
+
name: MTEB TwentyNewsgroupsClustering
|
2383 |
+
config: default
|
2384 |
+
split: test
|
2385 |
+
metrics:
|
2386 |
+
- type: v_measure
|
2387 |
+
value: 37.202082549859796
|
2388 |
+
- task:
|
2389 |
+
type: PairClassification
|
2390 |
+
dataset:
|
2391 |
+
type: mteb/twittersemeval2015-pairclassification
|
2392 |
+
name: MTEB TwitterSemEval2015
|
2393 |
+
config: default
|
2394 |
+
split: test
|
2395 |
+
metrics:
|
2396 |
+
- type: cos_sim_accuracy
|
2397 |
+
value: 83.65023544137807
|
2398 |
+
- type: cos_sim_ap
|
2399 |
+
value: 65.99787692764193
|
2400 |
+
- type: cos_sim_f1
|
2401 |
+
value: 62.10650887573965
|
2402 |
+
- type: cos_sim_precision
|
2403 |
+
value: 56.30901287553648
|
2404 |
+
- type: cos_sim_recall
|
2405 |
+
value: 69.23482849604221
|
2406 |
+
- type: dot_accuracy
|
2407 |
+
value: 79.10830303391549
|
2408 |
+
- type: dot_ap
|
2409 |
+
value: 48.80109642320246
|
2410 |
+
- type: dot_f1
|
2411 |
+
value: 51.418744625967314
|
2412 |
+
- type: dot_precision
|
2413 |
+
value: 40.30253107683091
|
2414 |
+
- type: dot_recall
|
2415 |
+
value: 71.00263852242745
|
2416 |
+
- type: euclidean_accuracy
|
2417 |
+
value: 82.45812719794957
|
2418 |
+
- type: euclidean_ap
|
2419 |
+
value: 60.09969493259607
|
2420 |
+
- type: euclidean_f1
|
2421 |
+
value: 57.658573789246226
|
2422 |
+
- type: euclidean_precision
|
2423 |
+
value: 55.62913907284768
|
2424 |
+
- type: euclidean_recall
|
2425 |
+
value: 59.84168865435356
|
2426 |
+
- type: manhattan_accuracy
|
2427 |
+
value: 82.46408773916671
|
2428 |
+
- type: manhattan_ap
|
2429 |
+
value: 60.116199786815116
|
2430 |
+
- type: manhattan_f1
|
2431 |
+
value: 57.683903860160235
|
2432 |
+
- type: manhattan_precision
|
2433 |
+
value: 53.41726618705036
|
2434 |
+
- type: manhattan_recall
|
2435 |
+
value: 62.69129287598945
|
2436 |
+
- type: max_accuracy
|
2437 |
+
value: 83.65023544137807
|
2438 |
+
- type: max_ap
|
2439 |
+
value: 65.99787692764193
|
2440 |
+
- type: max_f1
|
2441 |
+
value: 62.10650887573965
|
2442 |
+
- task:
|
2443 |
+
type: PairClassification
|
2444 |
+
dataset:
|
2445 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2446 |
+
name: MTEB TwitterURLCorpus
|
2447 |
+
config: default
|
2448 |
+
split: test
|
2449 |
+
metrics:
|
2450 |
+
- type: cos_sim_accuracy
|
2451 |
+
value: 88.34943920518494
|
2452 |
+
- type: cos_sim_ap
|
2453 |
+
value: 84.5428891020442
|
2454 |
+
- type: cos_sim_f1
|
2455 |
+
value: 77.09709933923172
|
2456 |
+
- type: cos_sim_precision
|
2457 |
+
value: 74.83150952967607
|
2458 |
+
- type: cos_sim_recall
|
2459 |
+
value: 79.50415768401602
|
2460 |
+
- type: dot_accuracy
|
2461 |
+
value: 84.53448208949432
|
2462 |
+
- type: dot_ap
|
2463 |
+
value: 73.96328242371995
|
2464 |
+
- type: dot_f1
|
2465 |
+
value: 70.00553786515299
|
2466 |
+
- type: dot_precision
|
2467 |
+
value: 63.58777665995976
|
2468 |
+
- type: dot_recall
|
2469 |
+
value: 77.86418232214352
|
2470 |
+
- type: euclidean_accuracy
|
2471 |
+
value: 86.87662514068381
|
2472 |
+
- type: euclidean_ap
|
2473 |
+
value: 81.45499631520235
|
2474 |
+
- type: euclidean_f1
|
2475 |
+
value: 73.46567109816063
|
2476 |
+
- type: euclidean_precision
|
2477 |
+
value: 69.71037533697381
|
2478 |
+
- type: euclidean_recall
|
2479 |
+
value: 77.6485987064983
|
2480 |
+
- type: manhattan_accuracy
|
2481 |
+
value: 86.88244654014825
|
2482 |
+
- type: manhattan_ap
|
2483 |
+
value: 81.47180273946366
|
2484 |
+
- type: manhattan_f1
|
2485 |
+
value: 73.44624393136418
|
2486 |
+
- type: manhattan_precision
|
2487 |
+
value: 70.80385852090032
|
2488 |
+
- type: manhattan_recall
|
2489 |
+
value: 76.29350169387126
|
2490 |
+
- type: max_accuracy
|
2491 |
+
value: 88.34943920518494
|
2492 |
+
- type: max_ap
|
2493 |
+
value: 84.5428891020442
|
2494 |
+
- type: max_f1
|
2495 |
+
value: 77.09709933923172
|
2496 |
---
|
2497 |
|
2498 |
+
# SGPT-5.8B-weightedmean-msmarco-specb-bitfit
|
2499 |
|
2500 |
## Usage
|
2501 |
|
|
|
2503 |
|
2504 |
## Evaluation Results
|
2505 |
|
2506 |
+
For eval results, refer to our paper: https://arxiv.org/abs/2202.08904
|
2507 |
|
2508 |
## Training
|
2509 |
The model was trained with the parameters:
|
2510 |
|
2511 |
**DataLoader**:
|
2512 |
|
2513 |
+
`torch.utils.data.dataloader.DataLoader` of length 249592 with parameters:
|
2514 |
```
|
2515 |
+
{'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
2516 |
```
|
2517 |
|
2518 |
**Loss**:
|
|
|
2525 |
Parameters of the fit()-Method:
|
2526 |
```
|
2527 |
{
|
2528 |
+
"epochs": 10,
|
2529 |
+
"evaluation_steps": 0,
|
2530 |
+
"evaluator": "NoneType",
|
2531 |
"max_grad_norm": 1,
|
2532 |
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
2533 |
"optimizer_params": {
|
2534 |
+
"lr": 5e-05
|
2535 |
},
|
2536 |
"scheduler": "WarmupLinear",
|
2537 |
"steps_per_epoch": null,
|
2538 |
+
"warmup_steps": 1000,
|
2539 |
"weight_decay": 0.01
|
2540 |
}
|
2541 |
```
|
|
|
2544 |
## Full Model Architecture
|
2545 |
```
|
2546 |
SentenceTransformer(
|
2547 |
+
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel
|
2548 |
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
|
2549 |
)
|
2550 |
```
|