--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-news_sentiment-analysis results: [] --- # distilbert-news_sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2976 - Accuracy: 0.9264 - F1: 0.9264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3239 | 1.0 | 782 | 0.2484 | 0.9178 | 0.9179 | | 0.1759 | 2.0 | 1564 | 0.2245 | 0.9268 | 0.9267 | | 0.1218 | 3.0 | 2346 | 0.2377 | 0.9280 | 0.9280 | | 0.0831 | 4.0 | 3128 | 0.2778 | 0.9289 | 0.9289 | | 0.0605 | 5.0 | 3910 | 0.2976 | 0.9264 | 0.9264 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1