File size: 2,134 Bytes
c49031c 84cbe35 c49031c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: other
tags:
- generated_from_trainer
base_model: deepseek-ai/deepseek-coder-1.3b-instruct
model-index:
- name: encoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# encoder
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co./deepseek-ai/deepseek-coder-1.3b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0670
- Mse: 1.0575
- Rmse: 1.0283
- Mae: 0.9076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|
| 0.0988 | 0.21 | 3000 | 0.0928 | 1.4795 | 1.2164 | 1.1099 |
| 0.0793 | 0.42 | 6000 | 0.0867 | 1.4370 | 1.1987 | 1.1076 |
| 0.0702 | 0.63 | 9000 | 0.0777 | 0.7554 | 0.8691 | 0.7701 |
| 0.0634 | 0.84 | 12000 | 0.0716 | 1.0950 | 1.0464 | 0.9449 |
| 0.0563 | 1.05 | 15000 | 0.0686 | 0.9966 | 0.9983 | 0.8899 |
| 0.0484 | 1.26 | 18000 | 0.0673 | 1.0653 | 1.0321 | 0.9161 |
| 0.0466 | 1.47 | 21000 | 0.0671 | 1.0877 | 1.0429 | 0.9219 |
| 0.0462 | 1.68 | 24000 | 0.0670 | 1.0613 | 1.0302 | 0.9090 |
| 0.046 | 1.89 | 27000 | 0.0670 | 1.0575 | 1.0283 | 0.9076 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0.dev20230605+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|