File size: 2,134 Bytes
c49031c
 
 
 
84cbe35
c49031c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: other
tags:
- generated_from_trainer
base_model: deepseek-ai/deepseek-coder-1.3b-instruct
model-index:
- name: encoder
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# encoder

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co./deepseek-ai/deepseek-coder-1.3b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0670
- Mse: 1.0575
- Rmse: 1.0283
- Mae: 0.9076

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mse    | Rmse   | Mae    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|
| 0.0988        | 0.21  | 3000  | 0.0928          | 1.4795 | 1.2164 | 1.1099 |
| 0.0793        | 0.42  | 6000  | 0.0867          | 1.4370 | 1.1987 | 1.1076 |
| 0.0702        | 0.63  | 9000  | 0.0777          | 0.7554 | 0.8691 | 0.7701 |
| 0.0634        | 0.84  | 12000 | 0.0716          | 1.0950 | 1.0464 | 0.9449 |
| 0.0563        | 1.05  | 15000 | 0.0686          | 0.9966 | 0.9983 | 0.8899 |
| 0.0484        | 1.26  | 18000 | 0.0673          | 1.0653 | 1.0321 | 0.9161 |
| 0.0466        | 1.47  | 21000 | 0.0671          | 1.0877 | 1.0429 | 0.9219 |
| 0.0462        | 1.68  | 24000 | 0.0670          | 1.0613 | 1.0302 | 0.9090 |
| 0.046         | 1.89  | 27000 | 0.0670          | 1.0575 | 1.0283 | 0.9076 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0.dev20230605+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2