File size: 23,778 Bytes
611d9bf
 
 
 
 
1fe1537
611d9bf
 
 
 
 
 
1fe1537
 
 
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
7f5cb34
611d9bf
7f5cb34
 
 
611d9bf
7f5cb34
611d9bf
7f5cb34
611d9bf
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
7f5cb34
 
 
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
7f5cb34
611d9bf
 
 
 
7f5cb34
 
 
 
 
 
 
 
 
 
 
 
611d9bf
 
 
 
 
7f5cb34
611d9bf
7f5cb34
 
611d9bf
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
7f5cb34
611d9bf
7f5cb34
611d9bf
 
 
 
 
7f5cb34
611d9bf
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5cb34
611d9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe1537
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
---
license: llama2
library_name: transformers
tags:
- code
- llamafile
metrics:
- code_eval
base_model: WizardLM/WizardCoder-Python-34B-V1.0
inference: false
model_creator: WizardLM
model_type: llama
prompt_template: >
  Below is an instruction that describes a task. Write a response that
  appropriately completes the request.


  ### Instruction:

  {prompt}


  ### Response:
quantized_by: TheBloke
model-index:
- name: WizardCoder-Python-34B-V1.0
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - type: pass@1
      value: 0.732
      name: pass@1
      verified: false
---

# WizardCoder Python 34B V1.0 - llamafile
- Model creator: [WizardLM](https://huggingface.co./WizardLM)
- Original model: [WizardCoder Python 34B V1.0](https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0)

<!-- description start -->
## Description

This repo contains llamafile format model files for [WizardLM's WizardCoder Python 34B V1.0](https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0).

WARNING: This README may contain inaccuracies. It was generated automatically by forking <a href=/TheBloke/WizardCoder-Python-34B-V1.0-GGUF>TheBloke/WizardCoder-Python-34B-V1.0-GGUF</a> and piping the README through sed. Errors should be reported to jartine, and do not reflect TheBloke. You can also support his work on [Patreon](https://www.patreon.com/TheBlokeAI).
<!-- README_llamafile.md-about-llamafile start -->
### About llamafile

llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64. llamafile offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.

Here is an incomplate list of clients and libraries that are known to support llamafile:

* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for llamafile. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.

<!-- README_llamafile.md-about-llamafile end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit llamafile models for CPU+GPU inference](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile)
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Alpaca

```
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

```

<!-- prompt-template end -->


<!-- compatibility_llamafile start -->
## Compatibility

These quantised llamafilev2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_llamafile end -->

<!-- README_llamafile.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [wizardcoder-python-34b-v1.0.Q2_K.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q2_K.llamafile) | Q2_K | 2 | 14.21 GB| 16.71 GB | smallest, significant quality loss - not recommended for most purposes |
| [wizardcoder-python-34b-v1.0.Q3_K_S.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_S.llamafile) | Q3_K_S | 3 | 14.61 GB| 17.11 GB | very small, high quality loss |
| [wizardcoder-python-34b-v1.0.Q3_K_M.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_M.llamafile) | Q3_K_M | 3 | 16.28 GB| 18.78 GB | very small, high quality loss |
| [wizardcoder-python-34b-v1.0.Q3_K_L.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_L.llamafile) | Q3_K_L | 3 | 17.77 GB| 20.27 GB | small, substantial quality loss |
| [wizardcoder-python-34b-v1.0.Q4_0.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_0.llamafile) | Q4_0 | 4 | 19.05 GB| 21.55 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [wizardcoder-python-34b-v1.0.Q4_K_S.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_K_S.llamafile) | Q4_K_S | 4 | 19.15 GB| 21.65 GB | small, greater quality loss |
| [wizardcoder-python-34b-v1.0.Q4_K_M.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_K_M.llamafile) | Q4_K_M | 4 | 20.22 GB| 22.72 GB | medium, balanced quality - recommended |
| [wizardcoder-python-34b-v1.0.Q5_0.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_0.llamafile) | Q5_0 | 5 | 23.24 GB| 25.74 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [wizardcoder-python-34b-v1.0.Q5_K_S.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_K_S.llamafile) | Q5_K_S | 5 | 23.24 GB| 25.74 GB | large, low quality loss - recommended |
| [wizardcoder-python-34b-v1.0.Q5_K_M.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_K_M.llamafile) | Q5_K_M | 5 | 23.84 GB| 26.34 GB | large, very low quality loss - recommended |
| [wizardcoder-python-34b-v1.0.Q6_K.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q6_K.llamafile) | Q6_K | 6 | 27.68 GB| 30.18 GB | very large, extremely low quality loss |
| [wizardcoder-python-34b-v1.0.Q8_0.llamafile](https://huggingface.co./jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q8_0.llamafile) | Q8_0 | 8 | 35.86 GB| 38.36 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.



<!-- README_llamafile.md-provided-files end -->

<!-- README_llamafile.md-how-to-download start -->
## How to download llamafile files

**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev

### In `text-generation-webui`

Under Download Model, you can enter the model repo: jartine/WizardCoder-Python-34B-V1.0-llamafile and below it, a specific filename to download, such as: wizardcoder-python-34b-v1.0.q4_K_M.llamafile.

Then click Download.

### On the command line, including multiple files at once

I recommend using the `huggingface-hub` Python library:

```shell
pip3 install huggingface-hub>=0.17.1
```

Then you can download any individual model file to the current directory, at high speed, with a command like this:

```shell
huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile wizardcoder-python-34b-v1.0.q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
```

<details>
  <summary>More advanced huggingface-cli download usage</summary>

You can also download multiple files at once with a pattern:

```shell
huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile --local-dir . --local-dir-use-symlinks False --include='*Q4_K*llamafile'
```

For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co./docs/huggingface_hub/guides/download#download-from-the-cli).

To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:

```shell
pip3 install hf_transfer
```

And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:

```shell
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile wizardcoder-python-34b-v1.0.q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
```

Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
</details>
<!-- README_llamafile.md-how-to-download end -->

<!-- README_llamafile.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.

```shell
./main -ngl 32 -m wizardcoder-python-34b-v1.0.q4_K_M.llamafile --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
```

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the llamafile file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use llamafile models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model from Python using ctransformers

#### First install the package

```bash
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
```

#### Simple example code to load one of these llamafile models

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("jartine/WizardCoder-Python-34B-V1.0-llamafile", model_file="wizardcoder-python-34b-v1.0.q4_K_M.llamafile", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here's guides on using llama-cpp-python or ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_llamafile.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[jartine AI's Discord server](https://discord.gg/FwAVVu7eJ4)

## Thanks, and how to contribute



I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.







And thank you again to mozilla for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: WizardLM's WizardCoder Python 34B V1.0


<p align="center">
πŸ€— <a href="https://huggingface.co./WizardLM" target="_blank">HF Repo</a>  β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a>  β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>    β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
</p>
<p align="center">
    πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>

## News

- πŸ”₯πŸ”₯πŸ”₯[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2023/06/16] We released **WizardCoder-15B-V1.0** , which achieves the **57.3 pass@1** and surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).

❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of [OpenAI](https://arxiv.org/abs/2303.08774). The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26).


|  Model  |  Checkpoint  | Paper    | HumanEval  |   MBPP | Demo | License |
| ----- |------| ---- |------|-------| ----- |  ----- |
|  WizardCoder-Python-34B-V1.0  |   πŸ€— <a href="https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  73.2   | 61.2 | [Demo](http://47.103.63.15:50085/) |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-15B-V1.0  |   πŸ€— <a href="https://huggingface.co./WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  59.8   |50.6 | -- |  <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-Python-13B-V1.0  |   πŸ€— <a href="https://huggingface.co./WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  64.0   | 55.6 | -- |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-3B-V1.0  |   πŸ€— <a href="https://huggingface.co./WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  34.8   |37.4 | [Demo](http://47.103.63.15:50086/) |  <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-1B-V1.0  |   πŸ€— <a href="https://huggingface.co./WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  23.8   |28.6 | -- |  <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |


-  Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
-  Our **WizardMath-70B-V1.0** model achieves  **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM, and achieves  **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.

<font size=4>

| Model | Checkpoint | Paper  | GSM8k | MATH  |Online Demo| License|
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co./WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6**  |  **22.7**	|[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a> |
| WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co./WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9**  |  **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co./WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| 	 **54.9**  |  **10.7** | [Demo ](http://47.103.63.15:50080/)|  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a>|
</font>


- [08/09/2023] We released **WizardLM-70B-V1.0** model. Here is [Full Model Weight](https://huggingface.co./WizardLM/WizardLM-70B-V1.0).

<font size=4>


| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup>  | <sup>GSM8k</sup> | <sup>HumanEval</sup>  | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup>	 |<sup>**77.6%**</sup>	 | <sup>   **50.6**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>|  | <sup>7.06</sup> | <sup>89.17%</sup>	 |<sup>55.3%</sup>	 | <sup>36.6   </sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> |  | <sup>6.76</sup>  |<sup>86.32%</sup>	 | 	 | <sup>25.0   </sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup>  | | <sup>7.01</sup> |                    | |  <sup>37.8  </sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> |  | <sup>6.35</sup> | <sup>75.31%</sup> |  | <sup> 24.0   </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>|  <sup>πŸ€— <a href="https://huggingface.co./WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>|  |  |  |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
</font>


## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).

<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>

## Prompt Format
```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```

## Inference Demo Script

We provide the inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).

## Citation

Please cite the repo if you use the data, method or code in this repo.

```
@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}
```

<!-- original-model-card end -->