--- license: apache-2.0 language: - en - zh base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct datasets: - BAAI/IndustryInstruction_Finance-Economics - BAAI/IndustryInstruction tags: - 金融经济 - 语言模型 - chatmodel --- This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Finance-Economics](https://huggingface.co./datasets/BAAI/IndustryInstruction_Finance-Economics) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co./datasets/BAAI/IndustryInstruction) ## training params ``` learning_rate=1e-5 lr_scheduler_type=cosine max_length=2048 warmup_ratio=0.05 batch_size=64 epoch=10 ``` select best ckpt by the evaluation loss ## evaluation The following is an evaluation on the FinerBen dataset metrci. Since there are too many samples in the dataset, I randomly selected 500 samples from each dataset for evaluation. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642f6c64f945a8a5c9ee5b5d/shSgSkQ7nQqiBAl6IwBy5.png) ## how to use ```python # !/usr/bin/env python # -*- coding:utf-8 -*- # ================================================================== # [Author] : xiaofeng # [Descriptions] : # ================================================================== from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch llama3_jinja = """{% if messages[0]['role'] == 'system' %} {% set offset = 1 %} {% else %} {% set offset = 0 %} {% endif %} {{ bos_token }} {% for message in messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }} {% endfor %} {% if add_generation_prompt %} {{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }} {% endif %}""" dtype = torch.bfloat16 model_dir = "MonteXiaofeng/Finance-llama3_1_8B_instruct" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="cuda", torch_dtype=dtype, ) tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.chat_template = llama3_jinja # update template message = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "天气如何"}, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) print(prompt) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(inputs[0]) print(f"prompt_length:{prompt_length}") generating_args = { "do_sample": True, "temperature": 1.0, "top_p": 0.5, "top_k": 15, "max_new_tokens": 150, } generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args) response_ids = generate_output[:, prompt_length:] response = tokenizer.batch_decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) print(response) """ 天气如何?我可以为您提供最新的天气信息。请告诉我您所在的具体地点,我将为您查询天气情况。 """ ```