--- base_model: silma-ai/SILMA-9B-Instruct-v1.0 library_name: peft license: gemma tags: - trl - sft - generated_from_trainer model-index: - name: MohammedNasser/silma_9b_instruct_ft results: [] --- # MohammedNasser/silma_9b_instruct_ft This model is a fine-tuned version of [silma-ai/SILMA-9B-Instruct-v1.0](https://huggingface.co./silma-ai/SILMA-9B-Instruct-v1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1356 | 0.04 | 10 | 1.4071 | | 0.8079 | 0.08 | 20 | 0.2825 | | 0.1592 | 0.12 | 30 | 0.1427 | | 0.1202 | 0.16 | 40 | 0.1121 | | 0.1095 | 0.2 | 50 | 0.1071 | | 0.1024 | 0.24 | 60 | 0.1036 | | 0.0993 | 0.28 | 70 | 0.1002 | | 0.091 | 0.32 | 80 | 0.0992 | | 0.1096 | 0.36 | 90 | 0.0965 | | 0.0943 | 0.4 | 100 | 0.0916 | | 0.0882 | 0.44 | 110 | 0.0896 | | 0.0853 | 0.48 | 120 | 0.0848 | | 0.0767 | 0.52 | 130 | 0.0808 | | 0.0778 | 0.56 | 140 | 0.0765 | | 0.0698 | 0.6 | 150 | 0.0734 | | 0.0784 | 0.64 | 160 | 0.0694 | | 0.0648 | 0.68 | 170 | 0.0658 | | 0.0797 | 0.72 | 180 | 0.0630 | | 0.0591 | 0.76 | 190 | 0.0604 | | 0.0557 | 0.8 | 200 | 0.0582 | | 0.0567 | 0.84 | 210 | 0.0561 | | 0.057 | 0.88 | 220 | 0.0534 | | 0.0505 | 0.92 | 230 | 0.0515 | | 0.0483 | 0.96 | 240 | 0.0482 | | 0.0463 | 1.0 | 250 | 0.0463 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1