--- language: - ar license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: "Whisper whisper-large-v3\t ar1 - Mohamed Shaaban" results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common standard ar Voice 11.0 type: mozilla-foundation/common_voice_11_0 metrics: - name: Wer type: wer value: 0.0 --- # Whisper whisper-large-v3 ar1 - Mohamed Shaaban This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common standard ar Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4220 - Wer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5721 | 1.0 | 1 | 2.1602 | 100.0 | | 0.5723 | 2.0 | 2 | 1.0610 | 33.3333 | | 0.1861 | 3.0 | 3 | 0.6003 | 33.3333 | | 0.0478 | 4.0 | 4 | 0.4661 | 0.0 | | 0.0262 | 5.0 | 5 | 0.4220 | 0.0 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2