File size: 2,110 Bytes
5d491de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: "Whisper whisper-large-v3\t ar1 - Mohamed Shaaban"
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common standard ar Voice 11.0
type: mozilla-foundation/common_voice_11_0
metrics:
- name: Wer
type: wer
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper whisper-large-v3 ar1 - Mohamed Shaaban
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common standard ar Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4220
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5721 | 1.0 | 1 | 2.1602 | 100.0 |
| 0.5723 | 2.0 | 2 | 1.0610 | 33.3333 |
| 0.1861 | 3.0 | 3 | 0.6003 | 33.3333 |
| 0.0478 | 4.0 | 4 | 0.4661 | 0.0 |
| 0.0262 | 5.0 | 5 | 0.4220 | 0.0 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|