ppo-LunarLander-v2 / config.json
MohaK's picture
first draft model
acd478e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7821c8d1b760>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7821c8d1b7f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7821c8d1b880>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7821c8d1b910>", "_build": "<function ActorCriticPolicy._build at 0x7821c8d1b9a0>", "forward": "<function ActorCriticPolicy.forward at 0x7821c8d1ba30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7821c8d1bac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7821c8d1bb50>", "_predict": "<function ActorCriticPolicy._predict at 0x7821c8d1bbe0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7821c8d1bc70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7821c8d1bd00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7821c8d1bd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7821c8d1d280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691059258294129978, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCQpr2PVgW6pcR8ucQVW7Qet/E54GaSOAAAAAAAAIA/zTjJu0P5Nz8M/gc9HOZpvn8hGD3qCMA8AAAAAAAAAAATNb++wzT+PvMYBD5S746+hY/fvRQxkrsAAAAAAAAAAI0bqD17BIq6k8P9u3xwcDkM5u66rdNhuAAAgD8AAAAAZiMWPreRHD/AoF48wIGRvsZuWD33Kya9AAAAAAAAAAAAMZI8QWanP4svzz10OdW+UKTqO/I4LT0AAAAAAAAAAM0h0j1aIAY+gxyevTkSNr746kA8pum+vAAAAAAAAAAAzfdfvfaMJboaGZ81yykNMYSJjDsdnKu0AACAPwAAgD+djJY+QkhcP4O91D5qgvi+ZppwPo99uL0AAAAAAAAAAE3mYj1cuxG6upxNOmWJIraffda6InV1uQAAgD8AAIA/ABoyPjCM3z7g+1e+dN83voIj5TyWv1C9AAAAAAAAAABmwoa7/omcPxPQ9bzOL/W+mlnPu0CACb0AAAAAAAAAAGbp5ryuYaC6Dv76OIvJ5TNx1526QYwQuAAAgD8AAIA/QCy4PY+SKzk2PeG8XJPOOBxHzLuAoUG4AACAPwAAgD/NTg48j01dPtRtMb5WJ0y+mSx4O36wnDkAAAAAAAAAAA20rr2PMnS6bayDO0K7GjaJNfS66u+XugAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGv6vbXYlIGMAWyUTc0CjAF0lEdAmazRhx5s03V9lChoBkdAT5Iksz2vjmgHS9xoCEdAma21mapgkXV9lChoBkdAYFbOFg2If2gHTegDaAhHQJmvn961LJ11fZQoaAZHQEBis+3Ytg9oB0vSaAhHQJmwk0Kqn3t1fZQoaAZHQE8V9jwx33ZoB0vFaAhHQJmziNjslcB1fZQoaAZHQHIwjEFW4mVoB037AWgIR0CZt6h99c8ldX2UKGgGR0BtKGHDaXa8aAdNYAJoCEdAmbnZwjt5U3V9lChoBkdAcDvGn4wh4mgHTXEBaAhHQJm55a5f+jx1fZQoaAZHQHAe/Wcz68BoB00zAWgIR0CZuf+MqBmPdX2UKGgGR0Bv5qd+XqqwaAdNggJoCEdAmbrRKL8763V9lChoBkdAYu7M2WIGhWgHTegDaAhHQJm7BD4QBgh1fZQoaAZHQHGW2RV6u4hoB00/AmgIR0CZu9IRh+fAdX2UKGgGR0BIkFzuF6AwaAdNCQFoCEdAmbxsFINEw3V9lChoBkdAbYv+xW1c+2gHTcQCaAhHQJm901YQrc11fZQoaAZHQFEe4GD+R5loB0vDaAhHQJm/c10knkV1fZQoaAZHQHJybV8Ti85oB010AmgIR0CZwB22Xsw+dX2UKGgGR0Bwtl3r2QGOaAdNqwFoCEdAmcDOW8h9s3V9lChoBkdAcP2RjjJdSmgHTaoBaAhHQJnDgzj3mFJ1fZQoaAZHQHFyh37k4m1oB00cAmgIR0CZxbFAVwgldX2UKGgGR0BvF0rCm/FjaAdNPAFoCEdAmcee6unuRnV9lChoBkdARnXdRBNVR2gHS+JoCEdAmch/5ckdFXV9lChoBkdAXJ1Gb1AZ9GgHTegDaAhHQJnI2W3Sa3J1fZQoaAZHQG/hwrtmcvxoB019AWgIR0CZypoIv8IidX2UKGgGR0BimmuHN5dGaAdN6ANoCEdAmcul9fCyhXV9lChoBkdAcUB+49X9zmgHTY8BaAhHQJndXznRsuZ1fZQoaAZHQHDRfS6UaAFoB01NAWgIR0CZ3ti6g/TtdX2UKGgGR0BJw26bvw3HaAdLzmgIR0CZ4F+9alk6dX2UKGgGR0BuGFk+X7cgaAdNDgJoCEdAmeGWhmGucXV9lChoBkdAbNKpPRArx2gHTTACaAhHQJniv9itq591fZQoaAZHQHCcCeAd4mloB00sAWgIR0CZ5RT/yXlbdX2UKGgGR0Bx8Aw+MZP3aAdNoQFoCEdAmefOeFtbcHV9lChoBkdAcHodT5wfhmgHTVIBaAhHQJnplJOFg2J1fZQoaAZHQGzzlpwjt5VoB00OA2gIR0CZ60k078vVdX2UKGgGR0BwcgGr0aqCaAdNOAFoCEdAmevGbLEDQ3V9lChoBkdAclf/XXiBG2gHTd0BaAhHQJnsPVkMCtB1fZQoaAZHQHAgGpuMuOFoB03rAmgIR0CZ7GciW3SbdX2UKGgGR0BwMtRIjGDMaAdNjAJoCEdAme104zabnXV9lChoBkdAcRjagmJFb2gHTUMBaAhHQJntmn2qT8p1fZQoaAZHQFACOp84PwxoB0vWaAhHQJnt1iSaEzx1fZQoaAZHQF0Bj7yhBZ9oB03oA2gIR0CZ7rDPWxyGdX2UKGgGR0Bwa2jdpItlaAdN/AFoCEdAmfH6BiCrcXV9lChoBkdAcKesXBP9DWgHTTwDaAhHQJn0WP8yeqd1fZQoaAZHQHD2ptFa0QdoB020AWgIR0CZ9X0PH1e0dX2UKGgGR0BwtYfr8iwCaAdNLAFoCEdAmfbxaPjn3nV9lChoBkdAb+xJkGzKLmgHTfYBaAhHQJn3j0mMOwx1fZQoaAZHQHIefLPldTpoB03IAWgIR0CZ/CJkoWpIdX2UKGgGR0ByhPr7fpEAaAdNcAFoCEdAmfx1R+BpYnV9lChoBkdAcQZ/Y8Md92gHTaADaAhHQJn81t/FzdV1fZQoaAZHQHFcjmbLEDRoB015AWgIR0CZ/tFFUhmodX2UKGgGR0Bw4gfeUILPaAdNbwNoCEdAmgC49TxXn3V9lChoBkdAciNJOFg2ImgHTcUBaAhHQJoBAKfFrEd1fZQoaAZHQG0Widat9x9oB00rAWgIR0CaBLyhSLqEdX2UKGgGR0Bxk62LHdXUaAdNeQFoCEdAmgZRiPQv6HV9lChoBkdAb2IkRBeHBWgHTQACaAhHQJoHBEAo5Px1fZQoaAZHQHEAgu7HyVhoB00hAmgIR0CaBxBsANobdX2UKGgGR0ByQ/KA8SwoaAdNcgJoCEdAmgkNY0VJtnV9lChoBkdAbQIZSeiBXmgHTVICaAhHQJoZigezUqh1fZQoaAZHQG6PaH0se4loB02eAmgIR0CaGev7m+0xdX2UKGgGR0BxAv3IuGsWaAdNNwFoCEdAmhsXS4OMEXV9lChoBkdAcpwn27FsHmgHTVEBaAhHQJobiCTUy591fZQoaAZHQHDH47JW/8FoB01NAWgIR0CaG6aNuLrHdX2UKGgGR0BwVmrDIikgaAdNJgFoCEdAmh3Xvc8DCHV9lChoBkdAbUr2V3Ux22gHTfwBaAhHQJod8v4/NaB1fZQoaAZHQHGmDXjENvxoB01aAWgIR0CaH1ois4kvdX2UKGgGR0BNv2WY4Qz2aAdLzmgIR0CaIJ/iYLLIdX2UKGgGR0Bt5z0pVjqfaAdNGwFoCEdAmiJ7GBFuvXV9lChoBkdAbtMstCiRGWgHTTsBaAhHQJokKHnEETx1fZQoaAZHQHH50MspXp5oB03sAWgIR0CaJHicXm/4dX2UKGgGR0Bwa0KWszVMaAdNdgFoCEdAmiTLmQr+YXV9lChoBkdAclyi83++/WgHTSQBaAhHQJol3N4Z/Ct1fZQoaAZHQHHplurIYFdoB00bA2gIR0CaJoUfxMFmdX2UKGgGR0Btut/BnBciaAdNIgFoCEdAmie+/L1VYXV9lChoBkdAcO4oNd7fHmgHTRkBaAhHQJonzbh3qzJ1fZQoaAZHQHFANrwe/6BoB02UAWgIR0CaJ/Rw6ySndX2UKGgGR0BPM8LronrqaAdL02gIR0CaKRrVvuPWdX2UKGgGR0BxpLsNUfgaaAdNVgFoCEdAminNhmXgL3V9lChoBkdAcAW/qxC6YmgHTTgBaAhHQJoq0QmNR3x1fZQoaAZHQHE1goG6f8NoB00kAWgIR0CaLNSsKb8WdX2UKGgGR0BFcdFvybx3aAdL5mgIR0CaLObW3BpIdX2UKGgGR0BvcYGt6ol2aAdNlQFoCEdAmi4TfrKNhnV9lChoBkdAcK8YBeXzDmgHTUEBaAhHQJovDHGS6lN1fZQoaAZHQHDkzsD4gzRoB00lAWgIR0CaL2JK8L8adX2UKGgGR0Asd3fyf+S9aAdLxmgIR0CaL8mdiDujdX2UKGgGR0BkBr4593KTaAdN6ANoCEdAmi/pNbkfcXV9lChoBkdAbvkOHWSU1WgHTS4BaAhHQJowoYbbUPR1fZQoaAZHQG+dyqEOAiFoB01QAWgIR0CaMQcJ+lTFdX2UKGgGR0BuzO7rcCYDaAdNMwFoCEdAmjEx9Tgl4XV9lChoBkdAcqO238XN1WgHTVwCaAhHQJoxP3j+7191fZQoaAZHQHGklFc6eXloB01GAWgIR0CaMlv3ai9JdX2UKGgGR0Bx8dJg9eQdaAdNdQFoCEdAmjPnq7iAD3V9lChoBkdAb06m1IAfdWgHTTQBaAhHQJo02Y0EX+F1fZQoaAZHQG9CfE4vN/xoB00UAWgIR0CaNxp48loldX2UKGgGR0Bx8hiTdLxqaAdNsAFoCEdAmjgzdpItlXV9lChoBkdAcEzMN+b3GmgHTSQBaAhHQJo5pAprk811fZQoaAZHQHB0xacI7eVoB01EAWgIR0CaOyhfBvaUdX2UKGgGR0BwsAxREWqMaAdNMQFoCEdAmjtJ7gKnenV9lChoBkdAcq4psXSBsmgHTTABaAhHQJo7xQ0oBq91fZQoaAZHQHHFqAvtdAxoB03WAWgIR0CaPdTLGJemdX2UKGgGR0Bx2h5LRKHxaAdNtgFoCEdAmj95pN9H+nV9lChoBkdAcHJ4tHxz72gHTScBaAhHQJo/uRYA80V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}