--- license: apache-2.0 license_link: https://huggingface.co./Qwen/QwQ-32B-Preview/blob/main/LICENSE language: - en base_model: - Qwen/QwQ-32B-Preview pipeline_tag: text-generation tags: - gptqmodel - modelcloud - chat - qwen2 - qwq - instruct - gptq - gguf --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/F7pXCPgPKmXdW_jWFQQ6L.png) ## Example with transformers: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "ModelCloud/QwQ-32B-Preview-gguf-vortex-v1" filename = "QwQ-32B-Preview-Q4_K_M.gguf" tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename) model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, device_map="cuda", torch_dtype=torch.float16) messages = [ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}, {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"}, ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ```