File size: 2,599 Bytes
31cf7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_CNN_NLP
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_CNN_NLP

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0479
- Rouge1: 45.8751
- Rouge2: 28.1917
- Rougel: 42.0922
- Rougelsum: 41.9934
- Gen Len: 6433791.8333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len      |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------------:|
| 3.1748        | 0.4   | 40   | 3.1564          | 44.8208 | 26.6733 | 41.2873 | 41.226    | 6433791.8889 |
| 3.0649        | 0.8   | 80   | 2.9386          | 45.8469 | 27.8327 | 41.8543 | 41.8139   | 6433791.8556 |
| 2.6983        | 1.2   | 120  | 2.8712          | 47.7681 | 29.8568 | 43.9396 | 43.8816   | 6433791.8778 |
| 2.6725        | 1.6   | 160  | 2.8698          | 46.6433 | 29.2504 | 43.1299 | 43.0348   | 6433791.9333 |
| 2.7537        | 2.0   | 200  | 2.8534          | 47.0645 | 29.6233 | 43.5479 | 43.4841   | 6433791.8778 |
| 2.3728        | 2.4   | 240  | 2.9305          | 46.1673 | 28.848  | 42.6293 | 42.5577   | 6433791.8889 |
| 2.3572        | 2.8   | 280  | 2.9414          | 47.2408 | 29.4202 | 43.4668 | 43.3747   | 6433791.9    |
| 2.087         | 3.2   | 320  | 3.0366          | 46.652  | 28.7844 | 42.7646 | 42.6204   | 6433791.8778 |
| 2.1212        | 3.6   | 360  | 3.0169          | 46.6902 | 28.1997 | 42.5114 | 42.4226   | 6433791.8222 |
| 2.1264        | 4.0   | 400  | 3.0479          | 45.8751 | 28.1917 | 42.0922 | 41.9934   | 6433791.8333 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2