File size: 1,936 Bytes
ef311b4 37da91d ef311b4 c3b7198 eb63d85 ef311b4 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 2c73754 ef311b4 2c73754 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 ef311b4 c3b7198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
library_name: transformers
license: cc-by-nc-4.0
datasets:
- TheFusion21/PokemonCards
language:
- en
pipeline_tag: image-to-text
---
## Model Details
### Model Description
- **Developed by:** [https://huggingface.co./Mit1208]
- **Finetuned from model:** [microsoft/kosmos-2-patch14-224]
## Training Details
https://github.com/mit1280/fined-tuning/blob/main/Kosmos_2_fine_tune_PokemonCards_trl.ipynb
## Inference Details
https://github.com/mit1280/fined-tuning/blob/main/kosmos2_fine_tuned_inference.ipynb
### How to Use
```python
from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
import torch
from io import BytesIO
import requests
from PIL import Image
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
my_model = Kosmos2ForConditionalGeneration.from_pretrained("Mit1208/Kosmos-2-PokemonCards-trl-merged", device_map="auto",low_cpu_mem_usage=True)
# load image
image_url = "https://images.pokemontcg.io/sm9/24_hires.png"
response = requests.get(image_url)
# Read the image from the response content
image = Image.open(BytesIO(response.content))
prompt = "Pokemon name is"
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda:0")
with torch.no_grad():
# autoregressively generate completion
generated_ids = my_model.generate(**inputs, max_new_tokens=30,)
# convert generated token IDs back to strings
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text.split("</image>")[-1].split(" and")[0] + ".")
'''
Output: Pokemon name is Wartortle.
'''
```
### Limitation
This model was fine-tuned using free colab version so only used 300 samples in training for **85** epochs.
Model is hallucinating very frequently so need to do post-processing. Another approach to handle this issue is update training data - use conversation data *and/or* update tokenizer padding token to tokenizer eos token. |