--- license: mit base_model: microsoft/Florence-2-large tags: - image-text-to-text - generated_from_trainer datasets: - doc_lay_net-small model-index: - name: Florence-2-large-DocLayNet results: [] --- # Florence-2-large-DocLayNet This model is a fine-tuned version of [microsoft/Florence-2-large](https://huggingface.co./microsoft/Florence-2-large) on the doc_lay_net-small dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4130 - eval_runtime: 10.2586 - eval_samples_per_second: 4.776 - eval_steps_per_second: 2.437 - epoch: 5.0 - step: 3440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.42.4 - Pytorch 2.2.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1