File size: 18,561 Bytes
7f43fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb07b5314d0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb07b531560>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb07b5315f0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb07b531680>",
"_build": "<function ActorCriticPolicy._build at 0x7fb07b531710>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb07b5317a0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb07b531830>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb07b5318c0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb07b531950>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb07b5319e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb07b531a70>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fb07b57f840>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIDqrrG1NoIpckdrrB8bAfDg8D5T/A50B7U+S6eQLNWaNANXfyIAcqxl+Vj4/mB6x8iysoeIVygyRWkCbo2T4uFdWlHbwin2rSzUrlzlfxfFxYf5E7bI/9xBzbDwTkHCPUFzkKYm6WjeTKxc8zcLgFh+N4BrnvKrQeGhgvYjeGocskEFHljBbZer3nP5YltMQqCFY5+ihxcdH+DgUOwHGAolOtvF6Fc239uTskD5G0AqQX4qoQ5j/lZUIdtr3MLhyxX5ZUpntqlwbCXiWDDGrkm2FiqH9ZdlLKegEsUGZDekRSIIox5nF8BxphAZLx5PBzmNUIA58Qd9hrbKDuHkcOUkEGG0evARyGmtSwy7sTGOc4Lz0YC25H8E5qCiP6WQ7nJOdCgriC4Fm4ANOoVGMXbR0bDR2TWVRgNkfmK1SyvgcjnVIJSUOP3BHylLC7Z3SCNE5fHd073Ir9JqTBez0RiW0ER8sqBV/KEcbB2aFY52lzF9nl6x9lTLY0cctEOnjumVJVnp5gQUp4cKRiuxo4mZ1ZFjCj+BCRQWfJ2nFLDzEX2gnadqQJpZh+uMjg+xmX7RiZo++u0pQc/gHuQu4LZmkoP2MJUAiB51VHcn0dXPArA/v079/HHZqr/2ePpZKqxCRi327lycY0cOgWCar4DhmdoX9Ajj1hpSHbSELZKotP7ccUJ1s4MilYtFYKqMnm6MVB21gHUQbyPXPPR+3/pB62Hysb2KhMWH5PGODdcsGT4TNmTiSXl5K8JWlsN+PXwD9S7n9ZFsOa8fRgkyOOcqyT+bhXBS0ERlvpQhBtZCqQ+NH9RBaYrn0UxopgTZn0KS8d10+uZ07eAb6Ba4RMeayKceB/H6TOBAQuBAvjTi1Rt1a2aTgGIJicJfDSHvyqjMEsFcM9QJCzrh8xdeGsUAUdnyFNX6d25tqzti1k7aNgRyX2ZO6ziAEtZO4tVAU5QPKVLskQ2V4MlyTRfO8k8jU3uHuNFxXr3E/UlvvcWA4CE35CKO/MAbu+/3WzChuTWYApBhAagrRp07gXda2kRKbDq47kQNQGs3Q+xJyty1Sd0XOwC9qRzgHmLhbORFxUj/PcQqxF1nb2KMdKBfgj5kmN3B2PJAqfgmF3iF+WwIHYlPn2P0oyJtDsATv4GuTdxUOmp9zzM626ZP/PJi7O2LTvskpZpGsGyfk41Nk6Uy0B0gyXWUadvQbTtz0Go+3krZioITWUG/axhZrizuSRPg0JuV/jY6AeqA+Z4Mr7GIuFUdHZeydEPbl21U+yukDOvQ78w2McR/vbPkUTcFOQbOQWOsz5WtPz/YtJ+RG9+T/ZWpZJtBxC2uoFhnvgN01SwtzFdg9/TO1mJEqSMTG80m4ree1r+3/VaIqk7vlz1coZtIBQDqkA4rPLrq+sYSlrUKmvc1QBtyDmcPkGC129slGXNiGyA8Lq5q1PlAQ94RkAT4RNdqBzDm6ThJZ94+eekgfYh1mOUnnnnVOTIJVCEWLN/J/EII4FNHowag4Acvbcnd0jVMF5iaOWEIFJyhUsq/uOliG31X6fgNqbLqwFD4k/BF2hFUYmcS4RAjTNVJl2lEDYy53OpRhQr0Rwjzb8q+UGZa/4+j31uxgdrYifPZYNLQJ51k3VxG0DPJZPa51R1Sws4TVwjyriblFUdjyzkNhtuSqmGTMEQqVXGMT/Pc8SIy6+LK/cApCC5G4pzq614RsFoq+v4vmR3R0ALL0McmkgrEvcy1z6EJ9Ia9ALNEzxBUFAgddtHMwq2yeIhfWPmRmxd8i25SDJe/5/lROYdgM1V/S4OM7Ct8NT/Y7LAw32WsBDxH9k3Fv0QOj70F7PGMxjXBOEF66WQEpwxIJ1H/Cn6/nvvK7jJpp+wQmSUzgCdjgw7uhz9y8wHBZahDsignwCeO8FykykVnHgQfH4X6J0g2EYwvYeaURQk6BIBp7Zzsn5i1Vb9xbCxfXjDG5XRUGXVDs1qSqzOyAhocua9dvOKUKSinTS0O41hK+6IXg43vRTObMop5rgByRbH0jF+Bw0J8eae+BwiWlQR8hvDr/9J1Gp/5PWXrhGNMgIuF8jMgDOySevQCwYiUsZupZ+BKbRwsM367R5DjTRQqQbvAqdBlIheWMIyWVSAKQ1/me1SRRHSUM9qzutNeIaDVcZf6T51FRWe6LTsPM7dq+j8jXtEtXKrfHqoAGWFAuEVIGTxi87wtS5zR8nQuK3WFqtbbLjPkW3ck/QTkDkOFKxIeCXt7SEA2p3l/AKiOtQWoYGDpXKk1Jn8rwxd9RYXG11sKbfynWnl8qbp/D8LhSzKYt5VkLcq4Wh2HzdrxeYbSF97/whuBppvZ5Ro3xWBcRiySrgwCcjEzI2Uk4uGjH1TOzSAUw9/9S2ndtEKNGgDF5fzTr7PlD0+wud7/hBiAmvp6XHwzrSy1psrgCzP74OaHtn6M6iJwVZ++rh8uVkUuyEzOmSbPTZTHlH9jKQowbxbJejADo+rv/eWwPN4Rcg3yFLHDjijWa5aA5mdXYMFqGYYimXxAzROmOKjvsfBJnUyuvZ6SHO2nT/zLlTUCcrNP/Tl5+FwnI8pjWx5cBGlB4TIuo35nWsIXnNTORyGL+TCtpsnXn8wth3ZaTZ9MMU/VfqNS3YQawfkpRdPOhUT2lhOQh4SWddwbtqh1tCjRLqhsYY6ADG/j1DbSIMyh68O2wxYDgvnxiyC0nf7WlZYwffcvKyB0EGc5w/8chQioqqbiWKec60kcIf6gMhAnjdB/N9/PBtMWsThHreyfW5EthDsN2hHGNEE6hA8AywlzK6Rm7KD/Bu4Tz3Jie6vQ+UZ2UI6bepySAnrqaFG+d3p3OzXspWkRTU9VpVvM6Zj4SKf/31sPHrITWLy9LjP78nvmoQb7zMQgHTo67Vm9G/oft8zFE7lCVfbAtM5HJWR3iV9vWVqHBgi9eUdaciPQhrhQGcjsBSORO985G+bswTtVfalowA5r4vnIbKvHmhOjBaP+WBfedi9VV/2ckrZufEWyKpowWcwjPnLDuojT8nr2uGLTLaQlGTd199tncRXf1yeqYqRb/+u37O3jp3/NaGziIkdLP22KcZ2ZUarbZOe3mb8i+6r9x6PZ/6loxBKk7HJ6gNIwQZ0+KZQoVb3cvl5Xg/AnH7e4oDhBVlvc48l/hLOkS9m0KOP3SASA0gqxVtvGMG2p8k+33LoBOK+x1f7B4HX+SeSlLNUkB3lyYP5RjKOgHyUxCtIx3zw4CfzskI0t2fqyAnC3Eb2y1owO4nswyoe/VuyRgRivDIMIgnhNpzws6V0xZohG6Qpql02ZgX2n50xndwYHhgNBWJR0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 20,
"num_timesteps": 512000,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": 42,
"action_noise": null,
"start_time": 1653904476.5107265,
"learning_rate": 1e-06,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz6wxvegte2NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVDQMAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxRLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAgAAg5lRvo90oT6KXg8/fkzRviBfOzvTFVA+AAAAAAAAAACaQXq8KZAyuqYPLjP+HfKu5bkFOk2w0bMAAIA/AACAP3jA0b6E/0M/kccEPqASF78P0AS/coUXPgAAAAAAAAAAM5aWvFzleryqKMM90ZebvchqNzvVEE89AACAPwAAgD8AKDK7ZEa3P4HbE74ZTec+596uO80BnD0AAAAAAAAAAO2HQr4JFlM/9VVTvorYD7/gGZW+0figvQAAAAAAAAAAjYCrPVWXiT+id6c+pGYxvykgKD6MGyM+AAAAAAAAAAAaiXc9Qt6nP756Dj+t4w+/GD2OPJ1xYD4AAAAAAAAAADNDYL69sik/ojWOvU0RBL/S8Z2+vUP8ugAAAAAAAAAAZsGyvI8SELq4aps29I4MMrrqCDsLz7m1AACAPwAAgD8NSdk99l1fP2L2LT7muh2/oTxgPlNuAjwAAAAAAAAAAACCQD2200W8P7SyO2ATGzzGCam9VBEFPQAAgD8AAIA/M7WaPTE7dz71eJS+U6PlvnxmVLsG8IW+AAAAAAAAAACa4Im8Ps20P74jKL5CuuW9DFFWPLu8hzsAAAAAAAAAAAAWnrzSoLA/TkymvXpon77BNb48Ytp/vQAAAAAAAAAAzT8mPt3wsT425YO+y6TjvjRYvD0RvQe+AAAAAAAAAADNpLg84RixuhqlEDxwi4w8PvJ8ui2HdD0AAIA/AACAP5rU3r3Ea7M+cSeSPdaT5b6Ybfy9O8cMuwAAAAAAAAAATbc8vTtojbw5+CA+JZwZvUlepL07NLu9AACAPwAAgD+AKD090mXlu1D4jb1EHve4fZo0PYjfAbsAAIA/AACAP5R0lGIu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gASVnAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDFAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.02400000000000002,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDAdCsoDkckCUhpRSlIwBbJRLtowBdJRHQK9Ne/336AR1fZQoaAZoCWgPQwha12g50NdOQJSGlFKUaBVLj2gWR0CvTbMyzolldX2UKGgGaAloD0MIeLZHbziBc0CUhpRSlGgVS8doFkdAr3CnndO6/nV9lChoBmgJaA9DCOAu+3Wn+3BAlIaUUpRoFUvHaBZHQK9wpz+3pfR1fZQoaAZoCWgPQwgepn1zf9FSQJSGlFKUaBVLlmgWR0CvcKqv/zasdX2UKGgGaAloD0MIg1K0cm8wc0CUhpRSlGgVS8hoFkdAr3DqkCV8kXV9lChoBmgJaA9DCAW/DTFee29AlIaUUpRoFUu3aBZHQK9xapEQXhx1fZQoaAZoCWgPQwgk0jb+RKZxQJSGlFKUaBVLvGgWR0CvcXpBPbfxdX2UKGgGaAloD0MIWtb9Y6GbcUCUhpRSlGgVS9hoFkdAr3GNSsKb8XV9lChoBmgJaA9DCEsC1NRyfHFAlIaUUpRoFUvaaBZHQK9xxAX2ugZ1fZQoaAZoCWgPQwg9gbBTLCxyQJSGlFKUaBVLsmgWR0CvcdyZBsyjdX2UKGgGaAloD0MImyDqPoAxcUCUhpRSlGgVS8hoFkdAr3H/DJlrdnV9lChoBmgJaA9DCAcHexMDCXNAlIaUUpRoFUvOaBZHQK9x/kn1Fph1fZQoaAZoCWgPQwjaBBiWPzRzQJSGlFKUaBVLxGgWR0Cvcjau4gA7dX2UKGgGaAloD0MIz4QmiaWBcUCUhpRSlGgVS9doFkdAr3J/yAhB7nV9lChoBmgJaA9DCFg4SfOHhnBAlIaUUpRoFUvQaBZHQK9ys7p3X7N1fZQoaAZoCWgPQwiPVN/5BTJyQJSGlFKUaBVLsWgWR0CvcuMiSq2jdX2UKGgGaAloD0MIrwYoDXUUcECUhpRSlGgVS7loFkdAr3L617Y023V9lChoBmgJaA9DCGk7pu7K4nJAlIaUUpRoFUvZaBZHQK9zNl/Yrax1fZQoaAZoCWgPQwg9murJvN9wQJSGlFKUaBVLumgWR0Cvc0gieNDMdX2UKGgGaAloD0MIL4UHza6CcUCUhpRSlGgVS+RoFkdAr3NlCkXUIHV9lChoBmgJaA9DCKzhIvf0t3JAlIaUUpRoFUvDaBZHQK90agfU4Jh1fZQoaAZoCWgPQwhQNA9gkVhvQJSGlFKUaBVLxGgWR0CvdHBD5TIedX2UKGgGaAloD0MIcnDpmHMfcUCUhpRSlGgVS6hoFkdAr3SsS9M9KXV9lChoBmgJaA9DCFwBhXq6c3FAlIaUUpRoFUvfaBZHQK90/I065oZ1fZQoaAZoCWgPQwj6CWe3Fm1zQJSGlFKUaBVL3GgWR0CvdSz6rNnodX2UKGgGaAloD0MICHWRQlmncUCUhpRSlGgVS8BoFkdAr3U7/S6UaHV9lChoBmgJaA9DCBOc+kDyvnJAlIaUUpRoFUuyaBZHQK91RwazeGh1fZQoaAZoCWgPQwiHhsWoa8dvQJSGlFKUaBVLt2gWR0CvdUZRCQcQdX2UKGgGaAloD0MIMCsU6f7UbkCUhpRSlGgVS8xoFkdAr3VXkili0HV9lChoBmgJaA9DCIHLY81I4W5AlIaUUpRoFUuzaBZHQK91a7btZ3d1fZQoaAZoCWgPQwgi41EqYQRyQJSGlFKUaBVLzGgWR0Cvdd2r4nF6dX2UKGgGaAloD0MITzv8NVkMc0CUhpRSlGgVS9BoFkdAr3Yqynk1dnV9lChoBmgJaA9DCMKHEi35fW5AlIaUUpRoFUvRaBZHQK92su27Wd51fZQoaAZoCWgPQwgSvYxieVlxQJSGlFKUaBVLxmgWR0CvdsEhzNlidX2UKGgGaAloD0MIX0TbMXUAckCUhpRSlGgVS+JoFkdAr3bQvtdAxHV9lChoBmgJaA9DCGIx6lq7TnJAlIaUUpRoFUvQaBZHQK923b1yvLZ1fZQoaAZoCWgPQwgxC+2cpgdxQJSGlFKUaBVLymgWR0CvdxCHh0hedX2UKGgGaAloD0MI0qxsH/Kgc0CUhpRSlGgVS9hoFkdAr3diekHlfnV9lChoBmgJaA9DCLraiv1lSVNAlIaUUpRoFUt6aBZHQK93mhKUVzp1fZQoaAZoCWgPQwizt5TzxZNyQJSGlFKUaBVL5GgWR0Cvd7VmrbQDdX2UKGgGaAloD0MIWYrkK4GNc0CUhpRSlGgVS8loFkdAr3g/rhR64XV9lChoBmgJaA9DCJKWytuRA3RAlIaUUpRoFUvSaBZHQK94Z18stkF1fZQoaAZoCWgPQwjePqvMlOFvQJSGlFKUaBVLxmgWR0CveGuJcgQpdX2UKGgGaAloD0MIGqN1VPWncECUhpRSlGgVS8BoFkdAr3jgIv8IiXV9lChoBmgJaA9DCGnGouns/HJAlIaUUpRoFUvGaBZHQK945ps41gp1fZQoaAZoCWgPQwhWgVoMXn1xQJSGlFKUaBVLw2gWR0CvePE9+w1SdX2UKGgGaAloD0MIEW+df7vrcECUhpRSlGgVS69oFkdAr3kzXDm8unV9lChoBmgJaA9DCK+UZYjj1nJAlIaUUpRoFUvVaBZHQK95QVKPGQ11fZQoaAZoCWgPQwhxWYXNALRxQJSGlFKUaBVL5mgWR0CveVao/A0sdX2UKGgGaAloD0MIQuigSzhRcUCUhpRSlGgVS9NoFkdAr3loKSgXdnV9lChoBmgJaA9DCFm/mZjuunJAlIaUUpRoFUuqaBZHQK95/Ex7AtZ1fZQoaAZoCWgPQwhgdk8eViFyQJSGlFKUaBVLzmgWR0Cvehh3iaRZdX2UKGgGaAloD0MI/YUeMfqocECUhpRSlGgVS6loFkdAr3pI/RmbsnV9lChoBmgJaA9DCDBK0F9orGdAlIaUUpRoFU3oA2gWR0CveqVgpjMFdX2UKGgGaAloD0MIj1a1pGPDckCUhpRSlGgVS9toFkdAr3rbpu/DcnV9lChoBmgJaA9DCN+l1CUjl3JAlIaUUpRoFUvcaBZHQK97BZElVtJ1fZQoaAZoCWgPQwg6IAn7dmdyQJSGlFKUaBVL4GgWR0Cvew5iExqPdX2UKGgGaAloD0MIz0vFxvwPc0CUhpRSlGgVS7doFkdAr3sWrCFbmnV9lChoBmgJaA9DCH+kiAxrvHFAlIaUUpRoFUvDaBZHQK97XtxdY4h1fZQoaAZoCWgPQwiiz0cZcW9yQJSGlFKUaBVL4WgWR0Cve5GJN0vHdX2UKGgGaAloD0MICJRNuUIfcUCUhpRSlGgVS7doFkdAr3vBqO938nV9lChoBmgJaA9DCDz2s1hKCnJAlIaUUpRoFUvUaBZHQK98O4J/oaF1fZQoaAZoCWgPQwj8HYoC/VlvQJSGlFKUaBVLv2gWR0CvfFWDg62fdX2UKGgGaAloD0MI86rOaoEJckCUhpRSlGgVS8FoFkdAr3xUKZ2IPHV9lChoBmgJaA9DCMdJYd6jrHJAlIaUUpRoFUvnaBZHQK98aNsnAqN1fZQoaAZoCWgPQwgBh1ClpvRyQJSGlFKUaBVLymgWR0CvfHWGyon8dX2UKGgGaAloD0MIogip25nJcUCUhpRSlGgVS8poFkdAr3y6McZLqXV9lChoBmgJaA9DCKRyE7W0gHJAlIaUUpRoFUvKaBZHQK98w4Otnwp1fZQoaAZoCWgPQwhpGan3FDlzQJSGlFKUaBVLzWgWR0CvfPM6q815dX2UKGgGaAloD0MI8iN+xRqsckCUhpRSlGgVS9JoFkdAr3z7pzLfUHV9lChoBmgJaA9DCGh5HtwdH3BAlIaUUpRoFUvAaBZHQK99erJ8v251fZQoaAZoCWgPQwg3xeOiWrVxQJSGlFKUaBVL5mgWR0Cvfdw+UyHmdX2UKGgGaAloD0MIvMrapnjqb0CUhpRSlGgVS7xoFkdAr33uAPNFB3V9lChoBmgJaA9DCCs1e6AV23JAlIaUUpRoFUvLaBZHQK9+ZuivgWJ1fZQoaAZoCWgPQwheud42k+9zQJSGlFKUaBVL62gWR0Cvfodrwe/6dX2UKGgGaAloD0MI73TniSebcUCUhpRSlGgVS9loFkdAr36VwNsnA3V9lChoBmgJaA9DCBwKn62DHHNAlIaUUpRoFUvcaBZHQK9+q6IWP911fZQoaAZoCWgPQwjVk/lH3+BwQJSGlFKUaBVLwWgWR0CvfsAZjx0/dX2UKGgGaAloD0MIW3heKjacckCUhpRSlGgVS9loFkdAr37y00FbFHV9lChoBmgJaA9DCLcm3ZbIl3FAlIaUUpRoFUvQaBZHQK9/O7GvOhV1fZQoaAZoCWgPQwjVA+YhE7VxQJSGlFKUaBVLt2gWR0Cvf2xpDeCTdX2UKGgGaAloD0MIGD4ipkTiTUCUhpRSlGgVS6FoFkdAr3+BTyauwHV9lChoBmgJaA9DCNHLKJYbPHJAlIaUUpRoFUvKaBZHQK9/p9zfaYh1fZQoaAZoCWgPQwjpKAezCQ1yQJSGlFKUaBVLwWgWR0Cvf7stsenydX2UKGgGaAloD0MIAmVTrrAUckCUhpRSlGgVS9NoFkdAr3/6S9ugpXV9lChoBmgJaA9DCH/Bbti29E1AlIaUUpRoFUt+aBZHQK+AG1lXiit1fZQoaAZoCWgPQwhHkiBcAQxzQJSGlFKUaBVL2mgWR0CvgG8ZDRdAdX2UKGgGaAloD0MIIHwo0dIPcUCUhpRSlGgVS9VoFkdAr4CcRBeHBXV9lChoBmgJaA9DCIP6ljmdmHNAlIaUUpRoFU0DAWgWR0CvgLjSG8EndX2UKGgGaAloD0MIjswjf7B8c0CUhpRSlGgVS99oFkdAr4DBg7YChnV9lChoBmgJaA9DCLYSukui93NAlIaUUpRoFUvOaBZHQK+BBTZQHiZ1fZQoaAZoCWgPQwgZ5ZmXgyt0QJSGlFKUaBVL0GgWR0CvgXMdDIBBdX2UKGgGaAloD0MIMXpuoes9ckCUhpRSlGgVS65oFkdAr4GtlGwzL3V9lChoBmgJaA9DCBIvT+cKFHFAlIaUUpRoFUuraBZHQK+Btg/C66J1fZQoaAZoCWgPQwiLpx5pMERxQJSGlFKUaBVLxmgWR0CvggK7qY7adX2UKGgGaAloD0MItW0YBQERckCUhpRSlGgVTdQBaBZHQK+CExyn1nN1fZQoaAZoCWgPQwhTeqaX2BZwQJSGlFKUaBVL3WgWR0CvgjzF+/g0dX2UKGgGaAloD0MIEXNJ1TYDckCUhpRSlGgVS9ZoFkdAr4I8uez2OHV9lChoBmgJaA9DCOIEptN6GnNAlIaUUpRoFUu2aBZHQK+CXY6nzhB1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 992,
"n_steps": 1024,
"gamma": 0.9992,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 8,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |