--- license: apache-2.0 pipeline_tag: token-classification --- An example of using an ensemble of models is shown in the main.py file Code for this project: https://github.com/Misha24-10/semeval_ner/tree/main In low lavel classification on MultiCoNER II in test set: | Класс | Precision | Recall | F1 | |---------------------------|-----------|--------|--------| | Facility | 0,7464 | 0,7321 | 0,7392 | | OtherLOC | 0,7932 | 0,7068 | 0,7475 | | HumanSettlement | 0,899 | 0,8948 | 0,8969 | | Station | 0,8318 | 0,8125 | 0,8221 | | VisualWork | 0,8528 | 0,8319 | 0,8422 | | MusicalWork | 0,8025 | 0,7813 | 0,7917 | | WrittenWork | 0,7766 | 0,728 | 0,7515 | | ArtWork | 0,6374 | 0,5528 | 0,5921 | | Software | 0,8476 | 0,8201 | 0,8336 | | MusicalGRP | 0,8185 | 0,8207 | 0,8196 | | PublicCorp | 0,7853 | 0,7572 | 0,771 | | PrivateCorp | 0,7362 | 0,6896 | 0,7121 | | AerospaceManufacturer | 0,6774 | 0,7541 | 0,7137 | | SportsGRP | 0,8715 | 0,8938 | 0,8825 | | CarManufacturer | 0,7617 | 0,7902 | 0,7757 | | ORG | 0,7617 | 0,7371 | 0,7492 | | Scientist | 0,5338 | 0,4886 | 0,5102 | | Artist | 0,7971 | 0,8369 | 0,8165 | | Athlete | 0,8094 | 0,802 | 0,8057 | | Politician | 0,7115 | 0,6194 | 0,6622 | | Cleric | 0,7349 | 0,6239 | 0,6748 | | SportsManager | 0,678 | 0,6097 | 0,6421 | | OtherPER | 0,5354 | 0,5915 | 0,562 | | Clothing | 0,6326 | 0,6876 | 0,659 | | Vehicle | 0,6699 | 0,6608 | 0,6653 | | Food | 0,6814 | 0,6634 | 0,6723 | | Drink | 0,6859 | 0,7203 | 0,7027 | | OtherPROD | 0,7033 | 0,6638 | 0,683 | | Medication/Vaccine | 0,7943 | 0,816 | 0,805 | | MedicalProcedure | 0,7481 | 0,7375 | 0,7428 | | AnatomicalStructure | 0,7765 | 0,7567 | 0,7664 | | Symptom | 0,6086 | 0,7178 | 0,6587 | | Disease | 0,7977 | 0,7719 | 0,7846 | | Macro Average Performance | 0,7423 | 0,7294 | 0,7349 | In high lavel classification on MultiCoNER II in test set: | Класс | Precision | Recall | F1 | |---------------------------|-----------|--------|--------| | LOC | 0,8866 | 0,8732 | 0,8798 | | Medicine | 0,794 | 0,7927 | 0,7934 | | GRP | 0,8489 | 0,8419 | 0,8454 | | PROD | 0,7449 | 0,7247 | 0,7347 | | PER | 0,9346 | 0,939 | 0,9368 | | CW | 0,8507 | 0,8162 | 0,8331 | | Macro Average Performance | 0,8433 | 0,8313 | 0,8372 | MultiCoNER II features complex NER in these languages: 1. English 2. Spanish 3. Hindi 4. Bangla 5. Chinese 6. Swedish 7. Farsi 8. French 9. Italian 10. Portugese 11. Ukranian 12. German classification entities in low level between languages overall Macro F1-score: | Язык | F1 | |------|--------| | PT | 0,6872 | | IT | 0,7441 | | UK | 0,7199 | | BN | 0,7320 | | FA | 0,6404 | | ES | 0,7230 | | FR | 0,7289 | | DE | 0,7164 | | EN | 0,7069 | | HI | 0,7544 | | ZH | 0,5899 | | SV | 0,7385 |