ToriiGate-v0.4-7B / example_scripts /inference_example_transformers.py
Minthy's picture
Super-squash branch 'main' using huggingface_hub
3d5bc41 verified
import torch
from transformers import Qwen2VLForConditionalGeneration, Qwen2VLProcessor
from qwen_vl_utils import process_vision_info
model_id='./ToriiGate-v04-7b'
max_new_tokens=1000
image_file='/path/to/image_1.jpg' #or url, or PIL.Image
image_info={}
image_info["booru_tags"]="2girls, standing, looking_at_viewer, holding_hands, hatsune_miku, blue_hair, megurine_luka, pink_hair, ..."
#image_info["booru_tags"]=open('/path/to/image_1_tags.txt').read().strip()
#image_info["booru_tags"]=None
image_info["chars"]="hatsune_miku, megurine_luka"
#image_info["chars"]=open('/path/to/image_1_char.txt').read().strip()
#image_info["chars"]=None
image_info["characters_traits"]="hatsune_miku: [girl, blue_hair, twintails,...]\nmegurine_luka: [girl, pink hair, ...]"
#image_info["characters_traits"]=open('/path/to/image_1_char_traits.txt').read().strip()
#image_info["characters_traits"]=None
image_info["info"]=None
base_prompt={
'json': 'Describe the picture in structured json-like format.',
'markdown': 'Describe the picture in structured markdown format.',
'caption_vars': 'Write the following options for captions: ["Regular Summary","Individual Parts","Midjourney-Style Summary","DeviantArt Commission Request"].',
'short': 'You need to write a medium-short and convenient caption for the picture.',
'long': 'You need to write a long and very detailed caption for the picture.',
'bbox': 'Write bounding boxes for each character and their faces.',
'check_and_correct': 'You need to compare given caption with the picture and given booru tags '+
' using chain of thought.\n'+
'1. Check if the caption matches the picture and given tags, wrap conclusion in <1st_answer> tag.\n'+
'2. Analyse if the caption mathes described characters, wrap answer in <2nd_answer> tag.\n'+
'3. In case if there are any mismatches - rewrite caption to correct it wrapping '+
' in <corrected_caption> tags. If the caption is fine - just write "no_need".',
}
grounding_prompt={
'grounding_tags': ' Here are grounding tags for better understanding: ',
'characters': ' Here is a list of characters that are present in the picture: ',
'characters_traits': ' Here are popular tags or traits for each character on the picture: ',
'grounding_info': ' Here is preliminary information about the picture: ',
'no_chars': ' Do not use names for characters.',
}
add_tags=True #select needed
add_chars=True
add_char_traits=True
add_info=False
no_chars=False
userprompt=base_prompt["json"] #choose the mode
if add_info and image_info["info"] is not None: #general info
userprompt+=grounding_prompt["grounding_short"]
userprompt+="<info>"+image_info["info"]+"</info>."
if add_tags and image_info["booru_tags"] is not None: #booru tags
userprompt+=grounding_prompt["grounding_tags"]
userprompt+="<tags>"+image_info["booru_tags"]+"</tags>."
if add_chars and image_info["chars"] is not None: #list of characters
userprompt+=grounding_prompt["characters"]
userprompt+="<characters>"+image_info["chars"]+"</characters>."
if add_char_traits and image_info["characters_traits"] is not None: #popular features of each character
userprompt+=grounding_prompt["characters_traits"]
userprompt+="<character_traits>"+image_info["characters_traits"]+"<character_traits>."
if no_chars:
userprompt+=grounding_prompt["no_chars"]
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2", #comment if not available
device_map="cuda:0",
)
processor = Qwen2VLProcessor.from_pretrained(model_id, min_pixels=256*28*28, max_pixels=512*28*28, padding_side="right")
msg=[{"role": "system",
"content": [{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored."}]},
{"role": "user",
"content": [{"type": "image", 'image': image_file},{"type": "text", "text": userprompt}]}]
text_input = processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
image_inputs,_ = process_vision_info(msg)
model_inputs = processor(
text=[text_input],
images=image_inputs,
videos=None,
padding=True,
return_tensors="pt",
).to('cuda')
generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
trimmed_generated_ids = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
trimmed_generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)