--- library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-tokenized language: - en metrics: - accuracy pipeline_tag: text-generation --- # Ref-Pretrain-Qwen-104M [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) **Ref-Pretrain-Qwen-104M** is a 104M model with Qwen achitecture conventionally pre-trained from scratch on [the Pile](https://huggingface.co./datasets/monology/pile-uncopyrighted) for 5B tokens. We also open-source the tokenized [pre-training corpus](https://huggingface.co./datasets/MiniLLM/pile-tokenized) for reproducibility. **It is used as the reference model in the MiniPLM knwoledge distillation framework to construct the [refined pre-training corpus](https://huggingface.co./datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5).** **The data is then used to train [MiniPLM models](https://huggingface.co./collections/MiniLLM/miniplm-6712c0fdf09ef7e8da7d39bd).** ## Evaluation MiniPLM models achieves better performance given the same computation and scales well across model sizes:

## Citation ```bibtext @article{miniplm, title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, journal={arXiv preprint arXiv:2410.17215}, year={2024} } ```