--- library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-tokenized language: - en metrics: - accuracy pipeline_tag: text-generation --- # Pretrain-Qwen-200M [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) **Pretrain-Qwen-200M** is a 200M model with QWen achitecture conventionally pre-trained from scratch on [the Pile](https://huggingface.co./datasets/monology/pile-uncopyrighted) for 50B tokens. We also open-source the tokenized [pre-training corpus](https://huggingface.co./datasets/MiniLLM/pile-tokenized) for reproducibility. **It is used as the baseline for [MiniLLM-Qwen-200M](https://huggingface.co./MiniLLM/MiniPLM-Qwen-200M)** ## Evaluation MiniPLM models achieves better performance given the same computation and scales well across model sizes:

## Other Baselines + [VanillaKD](https://huggingface.co./MiniLLM/VanillaKD-Pretrain-Qwen-200M) ## Citation ```bibtext @article{miniplm, title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, journal={arXiv preprint arXiv:2410.17215}, year={2024} } ```