PPO-LunarLander-v2 / config.json
Mihara-bot's picture
Upload PPO-LunarLander-v2 trained agent.
14d8d71
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5656abdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5656abe50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5656abee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5656abf70>", "_build": "<function ActorCriticPolicy._build at 0x7ff5656af040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff5656af0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff5656af160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5656af1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff5656af280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5656af310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5656af3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5656af430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff5656b04c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680331361261196029, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1OtDwXKOE+bQ1XvTAueL40gcC7gggdvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXrwft9/ccUCUhpRSlIwBbJRNfgGMAXSUR0CjsOuc+aBqdX2UKGgGaAloD0MI5nYv98kfa0CUhpRSlGgVTWcBaBZHQKOygifxtpF1fZQoaAZoCWgPQwheS8gHPYhrQJSGlFKUaBVNWQFoFkdAo7QtxyXD33V9lChoBmgJaA9DCKDGvfmNa3BAlIaUUpRoFU1gAWgWR0CjtjOtW+49dX2UKGgGaAloD0MIq8spATF7cUCUhpRSlGgVTaUBaBZHQKO3aJWNm191fZQoaAZoCWgPQwhW0/VEF+JwQJSGlFKUaBVNgwFoFkdAo7iLLjghr3V9lChoBmgJaA9DCCFZwATuuGhAlIaUUpRoFU1tAWgWR0CjugIJRfnfdX2UKGgGaAloD0MIjSjtDb45bkCUhpRSlGgVTVYBaBZHQKO67TTfBN51fZQoaAZoCWgPQwgjvD0IAfhxQJSGlFKUaBVNZgFoFkdAo7vbpkf9xnV9lChoBmgJaA9DCMB3mzfORm1AlIaUUpRoFU1WAWgWR0CjvWkcS5AhdX2UKGgGaAloD0MIEodsIF1TbUCUhpRSlGgVTaoBaBZHQKO+0uctoSN1fZQoaAZoCWgPQwh9JCU9DDdrQJSGlFKUaBVNagFoFkdAo8CBgb6xgXV9lChoBmgJaA9DCEjdzr6yVnBAlIaUUpRoFU1HAWgWR0CjwWw+t8u0dX2UKGgGaAloD0MIkNlZ9M5/bkCUhpRSlGgVTXoBaBZHQKPCqZaV2Rt1fZQoaAZoCWgPQwjwiuB/K15uQJSGlFKUaBVNbAFoFkdAo8QlCw8nu3V9lChoBmgJaA9DCC6RC86gDXBAlIaUUpRoFU02AWgWR0CjxQSYXwb3dX2UKGgGaAloD0MIFW9kHjnEcECUhpRSlGgVTUEBaBZHQKPF0kona391fZQoaAZoCWgPQwinsijsIs9xQJSGlFKUaBVNbgFoFkdAo8dQ5xR2sHV9lChoBmgJaA9DCGNeRxwyYmtAlIaUUpRoFU1GAWgWR0CjyD4zi0fHdX2UKGgGaAloD0MIkGtDxThhRkCUhpRSlGgVTRoBaBZHQKPI9v5P/Jh1fZQoaAZoCWgPQwjXicvxipFwQJSGlFKUaBVNRQFoFkdAo8m/Ue+23XV9lChoBmgJaA9DCLHCLR8JZ3BAlIaUUpRoFU1JAWgWR0Cjy8WgOBlMdX2UKGgGaAloD0MIZ9E7FXAvEUCUhpRSlGgVTQ8BaBZHQKPMq39aUzN1fZQoaAZoCWgPQwg+6q9XWMBLQJSGlFKUaBVNNQFoFkdAo83LtiQT23V9lChoBmgJaA9DCMKjjSNW3G1AlIaUUpRoFU03AWgWR0Cjz/DsD4gzdX2UKGgGaAloD0MIqBso8E5cbkCUhpRSlGgVTU0BaBZHQKPRVSS/0ul1fZQoaAZoCWgPQwh8e9egL75uQJSGlFKUaBVNtQFoFkdAo9NfWpZOi3V9lChoBmgJaA9DCNVcbjDUhU9AlIaUUpRoFUvpaBZHQKPUcCcPOIJ1fZQoaAZoCWgPQwjdmnRbooZwQJSGlFKUaBVNYQFoFkdAo9VboSteU3V9lChoBmgJaA9DCNhJfVkaj3BAlIaUUpRoFU0pAWgWR0Cj1ge4TbnHdX2UKGgGaAloD0MIDVGFP0NHb0CUhpRSlGgVTYcBaBZHQKPXqCwr1/V1fZQoaAZoCWgPQwjxaOOINdJvQJSGlFKUaBVNXwFoFkdAo9iYuyu6mXV9lChoBmgJaA9DCGRZMPFHg2FAlIaUUpRoFU3oA2gWR0Cj3XHS4OMEdX2UKGgGaAloD0MIcOtunmpVcUCUhpRSlGgVTU8BaBZHQKPeSyzolld1fZQoaAZoCWgPQwhNLsbAuk5sQJSGlFKUaBVNXwFoFkdAo9/McCHRC3V9lChoBmgJaA9DCK+w4H5AqG5AlIaUUpRoFU2dAWgWR0Cj4O2mHgxbdX2UKGgGaAloD0MI+WhxxnD1cECUhpRSlGgVTYgBaBZHQKPiH/lQuVZ1fZQoaAZoCWgPQwh+iuPAK0xwQJSGlFKUaBVNKgFoFkdAo+OItJ4B3nV9lChoBmgJaA9DCAtdiUA1h3FAlIaUUpRoFU08AWgWR0Cj5ErORkmQdX2UKGgGaAloD0MIHeVgNgFzcECUhpRSlGgVTVUBaBZHQKPlGxu89Oh1fZQoaAZoCWgPQwhS1QRR909tQJSGlFKUaBVNUAFoFkdAo+abY9Pk73V9lChoBmgJaA9DCNYCe0ykEG5AlIaUUpRoFU06AWgWR0Cj56Hzg/C7dX2UKGgGaAloD0MIwjHLngT6bUCUhpRSlGgVTXUBaBZHQKPpGL61stV1fZQoaAZoCWgPQwiQ2Vn0DtVwQJSGlFKUaBVNQwFoFkdAo+sfIlt0m3V9lChoBmgJaA9DCFnfwORGSTJAlIaUUpRoFUv1aBZHQKPsGLThHb11fZQoaAZoCWgPQwhnmNpSB2VHQJSGlFKUaBVNKAFoFkdAo+0tX5nDi3V9lChoBmgJaA9DCAr2X+dm6XBAlIaUUpRoFU14AWgWR0Cj75D15B1LdX2UKGgGaAloD0MIOKPmq6QIcECUhpRSlGgVTUoBaBZHQKPww4YJmd11fZQoaAZoCWgPQwip+pXOh7huQJSGlFKUaBVNdAFoFkdAo/HV5Sm65HV9lChoBmgJaA9DCOcBLPLrV01AlIaUUpRoFUvvaBZHQKPy7v3JxNt1fZQoaAZoCWgPQwjM7zSZcf5uQJSGlFKUaBVNPwFoFkdAo/Pp7VrhznV9lChoBmgJaA9DCC9RvTUwKXBAlIaUUpRoFU00AWgWR0Cj9Kj8DSw4dX2UKGgGaAloD0MIY2TJHEtkcECUhpRSlGgVTVsBaBZHQKP1iAJb+tN1fZQoaAZoCWgPQwhrDDohdE5vQJSGlFKUaBVNUQFoFkdAo/cIkcCHRHV9lChoBmgJaA9DCLsNar+1a3BAlIaUUpRoFU3LAWgWR0Cj+IJVCHARdX2UKGgGaAloD0MI7x6g+3LgSECUhpRSlGgVS+RoFkdAo/kM+qzZ6HV9lChoBmgJaA9DCHR7SWO06W1AlIaUUpRoFU0/AWgWR0Cj+nGKAJ9idX2UKGgGaAloD0MIi90+q8yeYUCUhpRSlGgVTegDaBZHQKP+3WJ79ht1fZQoaAZoCWgPQwi8zob8MytxQJSGlFKUaBVNOgFoFkdAo/+nXbuc+nV9lChoBmgJaA9DCLJkjuXdFG9AlIaUUpRoFU1JAWgWR0CkAHMrd30PdX2UKGgGaAloD0MIgbG+gcnNJUCUhpRSlGgVS/5oFkdApAGW3F1jiHV9lChoBmgJaA9DCP1s5LopEUtAlIaUUpRoFUv+aBZHQKQCMqqfe1t1fZQoaAZoCWgPQwgOFHgnX+xxQJSGlFKUaBVNpgFoFkdApANETlDF63V9lChoBmgJaA9DCFfPSe+bX3BAlIaUUpRoFU1JAWgWR0CkBL3ZoPCmdX2UKGgGaAloD0MI9KPhlLn/bkCUhpRSlGgVTVYBaBZHQKQGC8eS0Sh1fZQoaAZoCWgPQwicps8OOOdtQJSGlFKUaBVNMAFoFkdApAceSOinHnV9lChoBmgJaA9DCIYgByXMkm9AlIaUUpRoFU0oAWgWR0CkCTVJL/S6dX2UKGgGaAloD0MIGF3eHC7cbkCUhpRSlGgVTWcBaBZHQKQK2hK15Sp1fZQoaAZoCWgPQwiuuaP/JTxwQJSGlFKUaBVNSgFoFkdApAwnEhq0t3V9lChoBmgJaA9DCNkJL8Ep225AlIaUUpRoFU1IAWgWR0CkDkIFmnO0dX2UKGgGaAloD0MIrfiGwmfPMECUhpRSlGgVS+BoFkdApA7RywOe8XV9lChoBmgJaA9DCGmn5nKDR0FAlIaUUpRoFU0CAWgWR0CkD2c4o7V8dX2UKGgGaAloD0MI3BK54AxUbECUhpRSlGgVTU8BaBZHQKQQSwr1/Uh1fZQoaAZoCWgPQwihMCjT6BtyQJSGlFKUaBVNXwFoFkdApBGyHymQ83V9lChoBmgJaA9DCEoNbQC2iHBAlIaUUpRoFU1IAWgWR0CkEqoatLcsdX2UKGgGaAloD0MIIy4AjdJ+bkCUhpRSlGgVTREBaBZHQKQTYQOnVG11fZQoaAZoCWgPQwj9LQH4JxNxQJSGlFKUaBVNegFoFkdApBTovvjOs3V9lChoBmgJaA9DCIyfxr15XW5AlIaUUpRoFU0zAWgWR0CkFb3W4EwGdX2UKGgGaAloD0MI/MitSbeXb0CUhpRSlGgVTSkBaBZHQKQWkl7+kxh1fZQoaAZoCWgPQwgPgSOBhl5rQJSGlFKUaBVNcwFoFkdApBhPGGVRk3V9lChoBmgJaA9DCBMNUvDUiXFAlIaUUpRoFU1DAWgWR0CkGRq6FuejdX2UKGgGaAloD0MIjUP9LmxfckCUhpRSlGgVTUsBaBZHQKQZ5XHzYmN1fZQoaAZoCWgPQwjhC5OpAuhsQJSGlFKUaBVNMwFoFkdApBtBGWldknV9lChoBmgJaA9DCEchyaweMXBAlIaUUpRoFU06AWgWR0CkHACsOoYOdX2UKGgGaAloD0MIZTkJpS9wY0CUhpRSlGgVTegDaBZHQKQfyDFId2h1fZQoaAZoCWgPQwiaJJaUu3lJQJSGlFKUaBVL6mgWR0CkIGHCO3lTdX2UKGgGaAloD0MI98jmqvnwcECUhpRSlGgVTWwBaBZHQKQhhJWeYlZ1fZQoaAZoCWgPQwhc/67PHDJxQJSGlFKUaBVNkAFoFkdApCPDn5i3HHV9lChoBmgJaA9DCA8PYfx0YnBAlIaUUpRoFU0uAWgWR0CkJNN+LFXJdX2UKGgGaAloD0MIAptz8EyMcECUhpRSlGgVTT4BaBZHQKQmEiO/+Kl1fZQoaAZoCWgPQwhM4qyIGphxQJSGlFKUaBVNNwFoFkdApChDzK9wm3V9lChoBmgJaA9DCPoNEw2SZXFAlIaUUpRoFU2gAWgWR0CkKiif6Gg0dX2UKGgGaAloD0MIzOuIQzbsb0CUhpRSlGgVTV4BaBZHQKQrnj+aScN1fZQoaAZoCWgPQwh4mzdOCrBrQJSGlFKUaBVNNwFoFkdApCz9HOKO1nV9lChoBmgJaA9DCNP1RNeFInFAlIaUUpRoFU1EAWgWR0CkLenuAqd6dX2UKGgGaAloD0MI0HzO3S4DcUCUhpRSlGgVTT8BaBZHQKQuuzkZJkJ1fZQoaAZoCWgPQwih9fBlorFtQJSGlFKUaBVNVwFoFkdApDBRHXmNi3V9lChoBmgJaA9DCAMHtHQF9WtAlIaUUpRoFU1NAWgWR0CkMUzRIBikdX2UKGgGaAloD0MI8rVnlgSpYECUhpRSlGgVTegDaBZHQKQ1JS8an751fZQoaAZoCWgPQwiOW8zPDd1rQJSGlFKUaBVNVwFoFkdApDYQacZtN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4104, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}