MiguelCalderon
commited on
Model save
Browse files- README.md +95 -0
- all_results.json +8 -0
- config.json +0 -1
- eval_results.json +8 -0
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: google-vit-base-patch16-224-OrganicAndInorganicWaste-classification
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9355
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# google-vit-base-patch16-224-OrganicAndInorganicWaste-classification
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Accuracy: 0.9355
|
36 |
+
- Loss: 0.3618
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0002
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 5
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
66 |
+
|:-------------:|:------:|:-----:|:--------:|:---------------:|
|
67 |
+
| 0.2168 | 0.1580 | 1000 | 0.9525 | 0.1303 |
|
68 |
+
| 0.196 | 0.3159 | 2000 | 0.941 | 0.1638 |
|
69 |
+
| 0.1993 | 0.4739 | 3000 | 0.9285 | 0.2206 |
|
70 |
+
| 0.1849 | 0.6318 | 4000 | 0.9225 | 0.2288 |
|
71 |
+
| 0.199 | 0.7898 | 5000 | 0.9105 | 0.3331 |
|
72 |
+
| 0.2171 | 0.9477 | 6000 | 0.944 | 0.1582 |
|
73 |
+
| 0.1209 | 1.1057 | 7000 | 0.9495 | 0.1887 |
|
74 |
+
| 0.114 | 1.2636 | 8000 | 0.932 | 0.1950 |
|
75 |
+
| 0.1268 | 1.4216 | 9000 | 0.9335 | 0.1965 |
|
76 |
+
| 0.1272 | 1.5795 | 10000 | 0.9165 | 0.3112 |
|
77 |
+
| 0.1003 | 1.7375 | 11000 | 0.9575 | 0.1353 |
|
78 |
+
| 0.0844 | 1.8954 | 12000 | 0.9345 | 0.2635 |
|
79 |
+
| 0.0757 | 2.0534 | 13000 | 0.952 | 0.1434 |
|
80 |
+
| 0.053 | 2.2113 | 14000 | 0.933 | 0.3203 |
|
81 |
+
| 0.0994 | 2.3693 | 15000 | 0.9405 | 0.2165 |
|
82 |
+
| 0.0248 | 2.5272 | 16000 | 0.951 | 0.2400 |
|
83 |
+
| 0.0842 | 2.6852 | 17000 | 0.906 | 0.4092 |
|
84 |
+
| 0.0733 | 2.8432 | 18000 | 0.9515 | 0.1937 |
|
85 |
+
| 0.0542 | 3.0011 | 19000 | 0.938 | 0.2911 |
|
86 |
+
| 0.0202 | 3.1591 | 20000 | 0.936 | 0.3648 |
|
87 |
+
| 0.0237 | 3.3170 | 21000 | 0.9355 | 0.3618 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.44.0
|
93 |
+
- Pytorch 2.4.0+cpu
|
94 |
+
- Datasets 2.20.0
|
95 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_accuracy": 0.4915,
|
3 |
+
"eval_loss": 0.7296295762062073,
|
4 |
+
"eval_model_preparation_time": 0.006,
|
5 |
+
"eval_runtime": 1071.7709,
|
6 |
+
"eval_samples_per_second": 1.866,
|
7 |
+
"eval_steps_per_second": 0.233
|
8 |
+
}
|
config.json
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
"num_channels": 3,
|
26 |
"num_hidden_layers": 12,
|
27 |
"patch_size": 16,
|
28 |
-
"problem_type": "single_label_classification",
|
29 |
"qkv_bias": true,
|
30 |
"torch_dtype": "float32",
|
31 |
"transformers_version": "4.44.0"
|
|
|
25 |
"num_channels": 3,
|
26 |
"num_hidden_layers": 12,
|
27 |
"patch_size": 16,
|
|
|
28 |
"qkv_bias": true,
|
29 |
"torch_dtype": "float32",
|
30 |
"transformers_version": "4.44.0"
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_accuracy": 0.4915,
|
3 |
+
"eval_loss": 0.7296295762062073,
|
4 |
+
"eval_model_preparation_time": 0.006,
|
5 |
+
"eval_runtime": 1071.7709,
|
6 |
+
"eval_samples_per_second": 1.866,
|
7 |
+
"eval_steps_per_second": 0.233
|
8 |
+
}
|