--- language: - ur tags: - sentiment analysis --- # Sentiment Binary Classifier for Urdu ## muril_base_cased_urdu_sentiment Base model is [google/muril-base-cased](https://huggingface.co./google/muril-base-cased), a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. Urdu sentiment analysis dataset is from [mirfan899](https://github.com/mirfan899/Urdu/tree/master/sentiment). ## Usage ### example: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased") model = AutoModelForSequenceClassification.from_pretrained("MichaelHuang/muril_base_cased_urdu_sentiment") # Define the input text text = ''' لیکن مسٹر پوتن نے یہ بھی کہا کہ یہ منصوبہ اسی وقت پیش کیا جا سکتا ہے جب لوگ 'مغرب اور کیئو میں' اس کے لیے تیار ہوں۔ روسی رہنما نے منگل کو ماسکو میں چینی صدر شی جن پنگ سے ملاقات کی جس میں روس یوکرین جنگ اور دونوں ممالک کے درمیان تعلقات پر تبادلہ خیال کیا گیا۔ گذشتہ ماہ شائع ہونے والے چین کے منصوبے میں واضح طور پر روس سے یوکرین چھوڑنے کا مطالبہ نہیں کیا گیا ہے۔ ''' # Tokenize the input text inputs = tokenizer(text, return_tensors='pt') # Make a prediction outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item() # Print the predicted class if predicted_class == 1: print('Positive') else: print('Negative') ```