Michael Brunzel
Add stopping criteria
61eac05
from typing import Dict, List, Any, Union
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria
import torch
from peft import PeftModel
class MyStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt, tokenizer):
self.target_sequence = target_sequence
self.prompt=prompt
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
# Get the generated text as a string
generated_text = self.tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
# Check if the target sequence appears in the generated text
if self.target_sequence in generated_text:
return True # Stop generation
return False # Continue generation
def __len__(self):
return 1
def __iter__(self):
yield self
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-rw-1b", device_map="auto", load_in_8bit=True)
self.model = PeftModel.from_pretrained(
self.model,
"MichaelAI23/falcon-rw-1b_8bit_finetuned",
torch_dtype=torch.float16,
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
self.template = {
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
"response_split": "### Response:"
}
self.instruction = """Extract the name of the person, the location, the hotel name and the desired date from the following hotel request"""
if torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
def generate_prompt(
self,
template: str,
instruction: str,
input: Union[None, str] = None,
label: Union[None, str] = None,
) -> str:
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
if input:
res = template["prompt_input"].format(
instruction=instruction, input=input
)
else:
res = template["prompt_no_input"].format(
instruction=instruction
)
if label:
res = f"{res}{label}"
return res
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:dict:):
The payload with the text prompt and generation parameters.
"""
# process input
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
inputs = self.generate_prompt(self.template, self.instruction, inputs)
# preprocess
self.tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
input_ids = input_ids.to(self.device)
# pass inputs with all kwargs in data
if parameters is not None:
outputs = self.model.generate(
input_ids=input_ids,
stopping_criteria=MyStoppingCriteria("<|endoftext|>", inputs, self.tokenizer),
**parameters)
else:
outputs = self.model.generate(
input_ids=input_ids, max_new_tokens=32,
stopping_criteria=MyStoppingCriteria("<|endoftext|>", inputs, self.tokenizer)
)
# postprocess the prediction
prediction = self.tokenizer.decode(outputs[0][input_ids.shape[1]:]) #, skip_special_tokens=True)
prediction = prediction.split("<|endoftext|>")[0]
return [{"generated_text": prediction}]