--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: experiment_lr_20241214_183914 results: [] --- # experiment_lr_20241214_183914 This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1307 - Exact Match Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 288 | 0.1307 | 0.0 | | 0.2773 | 2.0 | 576 | 0.0782 | 0.0 | | 0.2773 | 3.0 | 864 | 0.0732 | 0.0 | | 0.0756 | 4.0 | 1152 | 0.0723 | 0.0 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0