--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8854679802955665 --- # vit-msn-small-wbc-classifier-0316-cropped-cleaned-dataset-10 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co./facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Accuracy: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3709 | 1.0 | 17 | 0.6977 | 0.8050 | | 0.5673 | 2.0 | 34 | 0.5949 | 0.8099 | | 0.5227 | 3.0 | 51 | 0.6152 | 0.7931 | | 0.4958 | 4.0 | 68 | 0.4351 | 0.8436 | | 0.4402 | 5.0 | 85 | 0.3777 | 0.8580 | | 0.3878 | 6.0 | 102 | 0.3970 | 0.8699 | | 0.3646 | 7.0 | 119 | 0.3793 | 0.8641 | | 0.3452 | 8.0 | 136 | 0.3550 | 0.8805 | | 0.344 | 9.0 | 153 | 0.4003 | 0.8736 | | 0.3365 | 10.0 | 170 | 0.3654 | 0.8830 | | 0.3223 | 11.0 | 187 | 0.3571 | 0.8764 | | 0.2819 | 12.0 | 204 | 0.3665 | 0.8789 | | 0.2998 | 13.0 | 221 | 0.3609 | 0.8838 | | 0.2959 | 14.0 | 238 | 0.4335 | 0.8719 | | 0.2662 | 15.0 | 255 | 0.4245 | 0.8785 | | 0.2668 | 16.0 | 272 | 0.3760 | 0.8846 | | 0.2576 | 17.0 | 289 | 0.3728 | 0.8830 | | 0.2398 | 18.0 | 306 | 0.4192 | 0.8814 | | 0.2278 | 19.0 | 323 | 0.4156 | 0.8805 | | 0.2033 | 20.0 | 340 | 0.4159 | 0.8851 | | 0.2037 | 21.0 | 357 | 0.3986 | 0.8855 | | 0.1934 | 22.0 | 374 | 0.4220 | 0.8822 | | 0.1983 | 23.0 | 391 | 0.4159 | 0.8855 | | 0.1746 | 24.0 | 408 | 0.4179 | 0.8855 | | 0.1776 | 25.0 | 425 | 0.4247 | 0.8834 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1