--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: sentence-classifier results: [] --- # sentence-classifier This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co./dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3291 - Precision: 0.9236 - Recall: 0.9217 - Accuracy: 0.9219 - F1: 0.9221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | No log | 1.0 | 154 | 0.3536 | 0.8783 | 0.8745 | 0.8747 | 0.8753 | | No log | 2.0 | 308 | 0.2784 | 0.9132 | 0.9105 | 0.9105 | 0.9109 | | No log | 3.0 | 462 | 0.2928 | 0.9189 | 0.9160 | 0.9162 | 0.9165 | | 0.3402 | 4.0 | 616 | 0.3098 | 0.9239 | 0.9223 | 0.9227 | 0.9228 | | 0.3402 | 5.0 | 770 | 0.3291 | 0.9236 | 0.9217 | 0.9219 | 0.9221 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1