File size: 2,372 Bytes
7d400ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a224e0
 
7d400ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a224e0
7d400ca
 
 
 
 
 
 
2a224e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d400ca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr5e-5_at0.8_da0.2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-base-pretrained_lr5e-5_at0.8_da0.2

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3279
- Wer: 0.2674

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 25.9775       | 25.0  | 250  | 4.0805          | 1.0    |
| 3.4724        | 50.0  | 500  | 3.1777          | 1.0    |
| 3.0775        | 75.0  | 750  | 3.0307          | 1.0    |
| 2.7225        | 100.0 | 1000 | 2.2425          | 1.0    |
| 0.8725        | 125.0 | 1250 | 1.5857          | 0.4584 |
| 0.1745        | 150.0 | 1500 | 1.8015          | 0.3503 |
| 0.0937        | 175.0 | 1750 | 1.8837          | 0.3131 |
| 0.0645        | 200.0 | 2000 | 2.0461          | 0.2947 |
| 0.0528        | 225.0 | 2250 | 2.1465          | 0.2853 |
| 0.0366        | 250.0 | 2500 | 2.1419          | 0.2875 |
| 0.0336        | 275.0 | 2750 | 2.1437          | 0.2755 |
| 0.026         | 300.0 | 3000 | 2.1733          | 0.2717 |
| 0.0247        | 325.0 | 3250 | 2.2546          | 0.2683 |
| 0.0207        | 350.0 | 3500 | 2.2603          | 0.2700 |
| 0.0185        | 375.0 | 3750 | 2.3492          | 0.2670 |
| 0.0186        | 400.0 | 4000 | 2.3279          | 0.2674 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1