--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - text-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1922 - Accuracy: 0.9640 - Precision: 0.926 - Recall: 0.7928 - F1: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1639 | 1.0 | 1097 | 0.1940 | 0.9389 | 0.8762 | 0.6301 | 0.7331 | | 0.1069 | 2.0 | 2194 | 0.1561 | 0.9608 | 0.9478 | 0.7466 | 0.8352 | | 0.0897 | 3.0 | 3291 | 0.1922 | 0.9640 | 0.926 | 0.7928 | 0.8542 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Tokenizers 0.19.1