--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ALBERT_trainer_irony results: [] --- # ALBERT_trainer_irony This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the irony dataset. It achieves the following results on the evaluation set: - Loss: 0.6538 - Accuracy: 0.6327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 144 | 0.7213 | 0.4901 | | No log | 2.0 | 288 | 0.6935 | 0.5644 | | No log | 3.0 | 432 | 0.6834 | 0.5906 | | 0.6892 | 4.0 | 576 | 0.6651 | 0.6031 | | 0.6892 | 5.0 | 720 | 0.6731 | 0.6063 | | 0.6892 | 6.0 | 864 | 0.6892 | 0.5958 | | 0.6185 | 7.0 | 1008 | 0.6750 | 0.6188 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2