--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: ALBERT_trainer_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 --- # ALBERT_trainer_emotion This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3559 - Accuracy: 0.927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1217 | 1.0 | 800 | 0.1936 | 0.93 | | 0.1054 | 2.0 | 1600 | 0.2105 | 0.9305 | | 0.0893 | 3.0 | 2400 | 0.2199 | 0.933 | | 0.0751 | 4.0 | 3200 | 0.2412 | 0.9375 | | 0.0608 | 5.0 | 4000 | 0.2853 | 0.932 | | 0.0342 | 6.0 | 4800 | 0.3575 | 0.9315 | | 0.025 | 7.0 | 5600 | 0.3698 | 0.931 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2