MaziyarPanahi commited on
Commit
b17069a
·
verified ·
1 Parent(s): 2596784

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +249 -0
README.md ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - quantized
4
+ - 2-bit
5
+ - 3-bit
6
+ - 4-bit
7
+ - 5-bit
8
+ - 6-bit
9
+ - 8-bit
10
+ - GGUF
11
+ - transformers
12
+ - safetensors
13
+ - gguf
14
+ - gemma
15
+ - text-generation
16
+ - conversational
17
+ - arxiv:2312.11805
18
+ - arxiv:2009.03300
19
+ - arxiv:1905.07830
20
+ - arxiv:1911.11641
21
+ - arxiv:1904.09728
22
+ - arxiv:1905.10044
23
+ - arxiv:1907.10641
24
+ - arxiv:1811.00937
25
+ - arxiv:1809.02789
26
+ - arxiv:1911.01547
27
+ - arxiv:1705.03551
28
+ - arxiv:2107.03374
29
+ - arxiv:2108.07732
30
+ - arxiv:2110.14168
31
+ - arxiv:2304.06364
32
+ - arxiv:2206.04615
33
+ - arxiv:1804.06876
34
+ - arxiv:2110.08193
35
+ - arxiv:2009.11462
36
+ - arxiv:2101.11718
37
+ - arxiv:1804.09301
38
+ - arxiv:2109.07958
39
+ - arxiv:2203.09509
40
+ - license:other
41
+ - autotrain_compatible
42
+ - endpoints_compatible
43
+ - has_space
44
+ - text-generation-inference
45
+ - region:us
46
+ - text-generation
47
+ model_name: gemma-7b-it-GGUF
48
+ base_model: google/gemma-7b-it
49
+ inference: false
50
+ model_creator: google
51
+ pipeline_tag: text-generation
52
+ quantized_by: MaziyarPanahi
53
+ ---
54
+ # [MaziyarPanahi/gemma-7b-it-GGUF](https://huggingface.co/MaziyarPanahi/gemma-7b-it-GGUF)
55
+ - Model creator: [google](https://huggingface.co/google)
56
+ - Original model: [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
57
+
58
+ ## Description
59
+ [MaziyarPanahi/gemma-7b-it-GGUF](https://huggingface.co/MaziyarPanahi/gemma-7b-it-GGUF) contains GGUF format model files for [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it).
60
+
61
+ ## How to use
62
+ Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models:
63
+
64
+ ### About GGUF
65
+
66
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
67
+
68
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
69
+
70
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
71
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
72
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
73
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
74
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
75
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
76
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
77
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
78
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
79
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
80
+
81
+ ### Explanation of quantisation methods
82
+
83
+ <details>
84
+ <summary>Click to see details</summary>
85
+
86
+ The new methods available are:
87
+
88
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
89
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
90
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
91
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
92
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
93
+
94
+ ## How to download GGUF files
95
+
96
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
97
+
98
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
99
+
100
+ * LM Studio
101
+ * LoLLMS Web UI
102
+ * Faraday.dev
103
+
104
+ ### In `text-generation-webui`
105
+
106
+ Under Download Model, you can enter the model repo: [MaziyarPanahi/gemma-7b-it-GGUF](https://huggingface.co/MaziyarPanahi/gemma-7b-it-GGUF) and below it, a specific filename to download, such as: gemma-7b-it-GGUF.Q4_K_M.gguf.
107
+
108
+ Then click Download.
109
+
110
+ ### On the command line, including multiple files at once
111
+
112
+ I recommend using the `huggingface-hub` Python library:
113
+
114
+ ```shell
115
+ pip3 install huggingface-hub
116
+ ```
117
+
118
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
119
+
120
+ ```shell
121
+ huggingface-cli download MaziyarPanahi/gemma-7b-it-GGUF gemma-7b-it-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
122
+ ```
123
+ </details>
124
+ <details>
125
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
126
+
127
+ You can also download multiple files at once with a pattern:
128
+
129
+ ```shell
130
+ huggingface-cli download [MaziyarPanahi/gemma-7b-it-GGUF](https://huggingface.co/MaziyarPanahi/gemma-7b-it-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
131
+ ```
132
+
133
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
134
+
135
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
136
+
137
+ ```shell
138
+ pip3 install hf_transfer
139
+ ```
140
+
141
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
142
+
143
+ ```shell
144
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/gemma-7b-it-GGUF gemma-7b-it-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
145
+ ```
146
+
147
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
148
+ </details>
149
+
150
+ ## Example `llama.cpp` command
151
+
152
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
153
+
154
+ ```shell
155
+ ./main -ngl 35 -m gemma-7b-it-GGUF.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system
156
+ {system_message}<|im_end|>
157
+ <|im_start|>user
158
+ {prompt}<|im_end|>
159
+ <|im_start|>assistant"
160
+ ```
161
+
162
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
163
+
164
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
165
+
166
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
167
+
168
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
169
+
170
+ ## How to run in `text-generation-webui`
171
+
172
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
173
+
174
+ ## How to run from Python code
175
+
176
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
177
+
178
+ ### How to load this model in Python code, using llama-cpp-python
179
+
180
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
181
+
182
+ #### First install the package
183
+
184
+ Run one of the following commands, according to your system:
185
+
186
+ ```shell
187
+ # Base ctransformers with no GPU acceleration
188
+ pip install llama-cpp-python
189
+ # With NVidia CUDA acceleration
190
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
191
+ # Or with OpenBLAS acceleration
192
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
193
+ # Or with CLBLast acceleration
194
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
195
+ # Or with AMD ROCm GPU acceleration (Linux only)
196
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
197
+ # Or with Metal GPU acceleration for macOS systems only
198
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
199
+
200
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
201
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
202
+ pip install llama-cpp-python
203
+ ```
204
+
205
+ #### Simple llama-cpp-python example code
206
+
207
+ ```python
208
+ from llama_cpp import Llama
209
+
210
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
211
+ llm = Llama(
212
+ model_path="./gemma-7b-it-GGUF.Q4_K_M.gguf", # Download the model file first
213
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
214
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
215
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
216
+ )
217
+
218
+ # Simple inference example
219
+ output = llm(
220
+ "<|im_start|>system
221
+ {system_message}<|im_end|>
222
+ <|im_start|>user
223
+ {prompt}<|im_end|>
224
+ <|im_start|>assistant", # Prompt
225
+ max_tokens=512, # Generate up to 512 tokens
226
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
227
+ echo=True # Whether to echo the prompt
228
+ )
229
+
230
+ # Chat Completion API
231
+
232
+ llm = Llama(model_path="./gemma-7b-it-GGUF.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
233
+ llm.create_chat_completion(
234
+ messages = [
235
+ {"role": "system", "content": "You are a story writing assistant."},
236
+ {
237
+ "role": "user",
238
+ "content": "Write a story about llamas."
239
+ }
240
+ ]
241
+ )
242
+ ```
243
+
244
+ ## How to use with LangChain
245
+
246
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
247
+
248
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
249
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)