--- language: - en license: other library_name: transformers tags: - chat - qwen - qwen2.5 - finetune - english base_model: MaziyarPanahi/calme-3-selfmerge-qwen2-78b model_name: calme-3.2-instruct-78b license_name: qwen license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE pipeline_tag: text-generation inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi model-index: - name: calme-3.2-instruct-78b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 80.63 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 62.61 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 39.95 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 20.36 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 38.53 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.03 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b name: Open LLM Leaderboard --- Calme-3 Models > [!TIP] > This is an experimental model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️ # MaziyarPanahi/calme-3.2-instruct-78b This model is an advanced iteration of the powerful `Qwen/Qwen2.5-72B`, specifically fine-tuned to enhance its capabilities in generic domains. The `Qwen2.5-72B` base model was merged with itself to create a larger model. After that, the model was fine-tuned on a custom datasets. # ⚡ Quantized GGUF Here are the GGUF models thanks to [bartowski](https://huggingface.co./bartowski): [calme-3.2-instruct-78b-GGUF](https://huggingface.co./bartowski/calme-3.2-instruct-78b-GGUF) # ⚡ Quantized EXL2 Here is the EXL2 4.5 bits per weight (bpw) model thanks to [DavidCatalano](https://huggingface.co./DavidCatalano): [DavidCatalano/calme-3.2-instruct-78b-exl2](https://huggingface.co./DavidCatalano/calme-3.2-instruct-78b-exl2) DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw. # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-3.2-instruct-78b) | Metric |Value| |-------------------|----:| |Avg. |52.02| |IFEval (0-Shot) |80.63| |BBH (3-Shot) |62.61| |MATH Lvl 5 (4-Shot)|39.95| |GPQA (0-shot) |20.36| |MuSR (0-shot) |38.53| |MMLU-PRO (5-shot) |70.03| # Prompt Template This model uses `ChatML` prompt template: ```sh <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use ```python # Use a pipeline as a high-level helper from transformers import pipeline messages = [ {"role": "user", "content": "Who are you?"}, ] pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.2-instruct-78b") pipe(messages) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b") model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b") ``` # Ethical Considerations As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.