--- language: - en license: llama3 library_name: transformers tags: - axolotl - finetune - dpo - facebook - meta - pytorch - llama - llama-3 - chatml base_model: meta-llama/Meta-Llama-3-70B-Instruct datasets: - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha model_name: calme-2.1-llama3-70b pipeline_tag: text-generation license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi model-index: - name: calme-2.1-llama3-70b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.67 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.83 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 80.12 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.11 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.87 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 86.05 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-llama3-70b name: Open LLM Leaderboard --- Llama-3 DPO Logo # MaziyarPanahi/calme-2.1-llama3-70b This model is a fine-tune (DPO) of `meta-llama/Meta-Llama-3-70B-Instruct` model. # ⚡ Quantized GGUF All GGUF models are available here: [MaziyarPanahi/calme-2.1-llama3-70b-GGUF](https://huggingface.co./MaziyarPanahi/calme-2.1-llama3-70b-GGUF) # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-2.1-llama3-70b) | Metric |Value| |---------------------------------|----:| |Avg. |78.11| |AI2 Reasoning Challenge (25-Shot)|71.67| |HellaSwag (10-Shot) |85.83| |MMLU (5-Shot) |80.12| |TruthfulQA (0-shot) |62.11| |Winogrande (5-shot) |82.87| |GSM8k (5-shot) |86.05| **Top 10 models on the Leaderboard** Llama-3-70B finet-tuned models # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use You can use this model by using `MaziyarPanahi/calme-2.1-llama3-70b` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/calme-2.1-llama3-70b" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too ] outputs = pipeline( prompt, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ```