--- license: apache-2.0 tags: - finetuned - quantized - 4-bit - gptq - transformers - safetensors - mixtral - text-generation - moe - DPO - RL-TUNED - license:mit - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us model_name: Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B-GPTQ base_model: yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B inference: false model_creator: yunconglong pipeline_tag: text-generation quantized_by: MaziyarPanahi --- # Description [MaziyarPanahi/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B-GPTQ](https://huggingface.co./MaziyarPanahi/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B-GPTQ) is a quantized (GPTQ) version of [yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B](https://huggingface.co./yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B) ## How to use ### Install the necessary packages ``` pip install --upgrade accelerate auto-gptq transformers ``` ### Example Python code ```python from transformers import AutoTokenizer, pipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import torch model_id = "MaziyarPanahi/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B-GPTQ" quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=False ) model = AutoGPTQForCausalLM.from_quantized( model_id, use_safetensors=True, device="cuda:0", quantize_config=quantize_config) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.1 ) outputs = pipe("What is a large language model?") print(outputs[0]["generated_text"]) ```