MaziyarPanahi
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -8,4 +8,392 @@ tags:
|
|
8 |
|
9 |
Merge of top 7B models with TIES method
|
10 |
|
11 |
-
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
Merge of top 7B models with TIES method
|
10 |
|
11 |
+
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
12 |
+
|
13 |
+
## Eval
|
14 |
+
|
15 |
+
|
16 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fd5e18a90b6dc4633f6d292/YdjDNbmytFAPv-VGiuhx7.png)
|
17 |
+
|
18 |
+
```python
|
19 |
+
{
|
20 |
+
"all": {
|
21 |
+
"acc": 0.6487801278765712,
|
22 |
+
"acc_stderr": 0.03219011246717665,
|
23 |
+
"acc_norm": 0.6479445077777353,
|
24 |
+
"acc_norm_stderr": 0.032868022907407396,
|
25 |
+
"mc1": 0.5862913096695227,
|
26 |
+
"mc1_stderr": 0.0172408618120998,
|
27 |
+
"mc2": 0.7078078883926877,
|
28 |
+
"mc2_stderr": 0.015097515102384168
|
29 |
+
},
|
30 |
+
"harness|arc:challenge|25": {
|
31 |
+
"acc": 0.7167235494880546,
|
32 |
+
"acc_stderr": 0.013167478735134575,
|
33 |
+
"acc_norm": 0.7363481228668942,
|
34 |
+
"acc_norm_stderr": 0.012875929151297044
|
35 |
+
},
|
36 |
+
"harness|hellaswag|10": {
|
37 |
+
"acc": 0.7321250746863175,
|
38 |
+
"acc_stderr": 0.004419469983939178,
|
39 |
+
"acc_norm": 0.8884684325831508,
|
40 |
+
"acc_norm_stderr": 0.0031414591751392717
|
41 |
+
},
|
42 |
+
"harness|hendrycksTest-abstract_algebra|5": {
|
43 |
+
"acc": 0.31,
|
44 |
+
"acc_stderr": 0.04648231987117316,
|
45 |
+
"acc_norm": 0.31,
|
46 |
+
"acc_norm_stderr": 0.04648231987117316
|
47 |
+
},
|
48 |
+
"harness|hendrycksTest-anatomy|5": {
|
49 |
+
"acc": 0.6518518518518519,
|
50 |
+
"acc_stderr": 0.041153246103369526,
|
51 |
+
"acc_norm": 0.6518518518518519,
|
52 |
+
"acc_norm_stderr": 0.041153246103369526
|
53 |
+
},
|
54 |
+
"harness|hendrycksTest-astronomy|5": {
|
55 |
+
"acc": 0.7039473684210527,
|
56 |
+
"acc_stderr": 0.03715062154998904,
|
57 |
+
"acc_norm": 0.7039473684210527,
|
58 |
+
"acc_norm_stderr": 0.03715062154998904
|
59 |
+
},
|
60 |
+
"harness|hendrycksTest-business_ethics|5": {
|
61 |
+
"acc": 0.61,
|
62 |
+
"acc_stderr": 0.04902071300001975,
|
63 |
+
"acc_norm": 0.61,
|
64 |
+
"acc_norm_stderr": 0.04902071300001975
|
65 |
+
},
|
66 |
+
"harness|hendrycksTest-clinical_knowledge|5": {
|
67 |
+
"acc": 0.7132075471698113,
|
68 |
+
"acc_stderr": 0.02783491252754407,
|
69 |
+
"acc_norm": 0.7132075471698113,
|
70 |
+
"acc_norm_stderr": 0.02783491252754407
|
71 |
+
},
|
72 |
+
"harness|hendrycksTest-college_biology|5": {
|
73 |
+
"acc": 0.75,
|
74 |
+
"acc_stderr": 0.03621034121889507,
|
75 |
+
"acc_norm": 0.75,
|
76 |
+
"acc_norm_stderr": 0.03621034121889507
|
77 |
+
},
|
78 |
+
"harness|hendrycksTest-college_chemistry|5": {
|
79 |
+
"acc": 0.46,
|
80 |
+
"acc_stderr": 0.05009082659620333,
|
81 |
+
"acc_norm": 0.46,
|
82 |
+
"acc_norm_stderr": 0.05009082659620333
|
83 |
+
},
|
84 |
+
"harness|hendrycksTest-college_computer_science|5": {
|
85 |
+
"acc": 0.55,
|
86 |
+
"acc_stderr": 0.05,
|
87 |
+
"acc_norm": 0.55,
|
88 |
+
"acc_norm_stderr": 0.05
|
89 |
+
},
|
90 |
+
"harness|hendrycksTest-college_mathematics|5": {
|
91 |
+
"acc": 0.3,
|
92 |
+
"acc_stderr": 0.046056618647183814,
|
93 |
+
"acc_norm": 0.3,
|
94 |
+
"acc_norm_stderr": 0.046056618647183814
|
95 |
+
},
|
96 |
+
"harness|hendrycksTest-college_medicine|5": {
|
97 |
+
"acc": 0.6589595375722543,
|
98 |
+
"acc_stderr": 0.036146654241808254,
|
99 |
+
"acc_norm": 0.6589595375722543,
|
100 |
+
"acc_norm_stderr": 0.036146654241808254
|
101 |
+
},
|
102 |
+
"harness|hendrycksTest-college_physics|5": {
|
103 |
+
"acc": 0.43137254901960786,
|
104 |
+
"acc_stderr": 0.04928099597287534,
|
105 |
+
"acc_norm": 0.43137254901960786,
|
106 |
+
"acc_norm_stderr": 0.04928099597287534
|
107 |
+
},
|
108 |
+
"harness|hendrycksTest-computer_security|5": {
|
109 |
+
"acc": 0.77,
|
110 |
+
"acc_stderr": 0.04229525846816506,
|
111 |
+
"acc_norm": 0.77,
|
112 |
+
"acc_norm_stderr": 0.04229525846816506
|
113 |
+
},
|
114 |
+
"harness|hendrycksTest-conceptual_physics|5": {
|
115 |
+
"acc": 0.548936170212766,
|
116 |
+
"acc_stderr": 0.032529096196131965,
|
117 |
+
"acc_norm": 0.548936170212766,
|
118 |
+
"acc_norm_stderr": 0.032529096196131965
|
119 |
+
},
|
120 |
+
"harness|hendrycksTest-econometrics|5": {
|
121 |
+
"acc": 0.49122807017543857,
|
122 |
+
"acc_stderr": 0.04702880432049615,
|
123 |
+
"acc_norm": 0.49122807017543857,
|
124 |
+
"acc_norm_stderr": 0.04702880432049615
|
125 |
+
},
|
126 |
+
"harness|hendrycksTest-electrical_engineering|5": {
|
127 |
+
"acc": 0.5517241379310345,
|
128 |
+
"acc_stderr": 0.04144311810878152,
|
129 |
+
"acc_norm": 0.5517241379310345,
|
130 |
+
"acc_norm_stderr": 0.04144311810878152
|
131 |
+
},
|
132 |
+
"harness|hendrycksTest-elementary_mathematics|5": {
|
133 |
+
"acc": 0.4126984126984127,
|
134 |
+
"acc_stderr": 0.025355741263055277,
|
135 |
+
"acc_norm": 0.4126984126984127,
|
136 |
+
"acc_norm_stderr": 0.025355741263055277
|
137 |
+
},
|
138 |
+
"harness|hendrycksTest-formal_logic|5": {
|
139 |
+
"acc": 0.49206349206349204,
|
140 |
+
"acc_stderr": 0.044715725362943486,
|
141 |
+
"acc_norm": 0.49206349206349204,
|
142 |
+
"acc_norm_stderr": 0.044715725362943486
|
143 |
+
},
|
144 |
+
"harness|hendrycksTest-global_facts|5": {
|
145 |
+
"acc": 0.35,
|
146 |
+
"acc_stderr": 0.047937248544110196,
|
147 |
+
"acc_norm": 0.35,
|
148 |
+
"acc_norm_stderr": 0.047937248544110196
|
149 |
+
},
|
150 |
+
"harness|hendrycksTest-high_school_biology|5": {
|
151 |
+
"acc": 0.7967741935483871,
|
152 |
+
"acc_stderr": 0.02289168798455496,
|
153 |
+
"acc_norm": 0.7967741935483871,
|
154 |
+
"acc_norm_stderr": 0.02289168798455496
|
155 |
+
},
|
156 |
+
"harness|hendrycksTest-high_school_chemistry|5": {
|
157 |
+
"acc": 0.5024630541871922,
|
158 |
+
"acc_stderr": 0.035179450386910616,
|
159 |
+
"acc_norm": 0.5024630541871922,
|
160 |
+
"acc_norm_stderr": 0.035179450386910616
|
161 |
+
},
|
162 |
+
"harness|hendrycksTest-high_school_computer_science|5": {
|
163 |
+
"acc": 0.7,
|
164 |
+
"acc_stderr": 0.046056618647183814,
|
165 |
+
"acc_norm": 0.7,
|
166 |
+
"acc_norm_stderr": 0.046056618647183814
|
167 |
+
},
|
168 |
+
"harness|hendrycksTest-high_school_european_history|5": {
|
169 |
+
"acc": 0.7575757575757576,
|
170 |
+
"acc_stderr": 0.03346409881055953,
|
171 |
+
"acc_norm": 0.7575757575757576,
|
172 |
+
"acc_norm_stderr": 0.03346409881055953
|
173 |
+
},
|
174 |
+
"harness|hendrycksTest-high_school_geography|5": {
|
175 |
+
"acc": 0.803030303030303,
|
176 |
+
"acc_stderr": 0.028335609732463362,
|
177 |
+
"acc_norm": 0.803030303030303,
|
178 |
+
"acc_norm_stderr": 0.028335609732463362
|
179 |
+
},
|
180 |
+
"harness|hendrycksTest-high_school_government_and_politics|5": {
|
181 |
+
"acc": 0.9067357512953368,
|
182 |
+
"acc_stderr": 0.020986854593289733,
|
183 |
+
"acc_norm": 0.9067357512953368,
|
184 |
+
"acc_norm_stderr": 0.020986854593289733
|
185 |
+
},
|
186 |
+
"harness|hendrycksTest-high_school_macroeconomics|5": {
|
187 |
+
"acc": 0.6487179487179487,
|
188 |
+
"acc_stderr": 0.024203665177902803,
|
189 |
+
"acc_norm": 0.6487179487179487,
|
190 |
+
"acc_norm_stderr": 0.024203665177902803
|
191 |
+
},
|
192 |
+
"harness|hendrycksTest-high_school_mathematics|5": {
|
193 |
+
"acc": 0.3333333333333333,
|
194 |
+
"acc_stderr": 0.02874204090394848,
|
195 |
+
"acc_norm": 0.3333333333333333,
|
196 |
+
"acc_norm_stderr": 0.02874204090394848
|
197 |
+
},
|
198 |
+
"harness|hendrycksTest-high_school_microeconomics|5": {
|
199 |
+
"acc": 0.6554621848739496,
|
200 |
+
"acc_stderr": 0.03086868260412162,
|
201 |
+
"acc_norm": 0.6554621848739496,
|
202 |
+
"acc_norm_stderr": 0.03086868260412162
|
203 |
+
},
|
204 |
+
"harness|hendrycksTest-high_school_physics|5": {
|
205 |
+
"acc": 0.32450331125827814,
|
206 |
+
"acc_stderr": 0.038227469376587525,
|
207 |
+
"acc_norm": 0.32450331125827814,
|
208 |
+
"acc_norm_stderr": 0.038227469376587525
|
209 |
+
},
|
210 |
+
"harness|hendrycksTest-high_school_psychology|5": {
|
211 |
+
"acc": 0.8403669724770643,
|
212 |
+
"acc_stderr": 0.015703498348461763,
|
213 |
+
"acc_norm": 0.8403669724770643,
|
214 |
+
"acc_norm_stderr": 0.015703498348461763
|
215 |
+
},
|
216 |
+
"harness|hendrycksTest-high_school_statistics|5": {
|
217 |
+
"acc": 0.5046296296296297,
|
218 |
+
"acc_stderr": 0.03409825519163572,
|
219 |
+
"acc_norm": 0.5046296296296297,
|
220 |
+
"acc_norm_stderr": 0.03409825519163572
|
221 |
+
},
|
222 |
+
"harness|hendrycksTest-high_school_us_history|5": {
|
223 |
+
"acc": 0.8235294117647058,
|
224 |
+
"acc_stderr": 0.026756401538078962,
|
225 |
+
"acc_norm": 0.8235294117647058,
|
226 |
+
"acc_norm_stderr": 0.026756401538078962
|
227 |
+
},
|
228 |
+
"harness|hendrycksTest-high_school_world_history|5": {
|
229 |
+
"acc": 0.7721518987341772,
|
230 |
+
"acc_stderr": 0.02730348459906944,
|
231 |
+
"acc_norm": 0.7721518987341772,
|
232 |
+
"acc_norm_stderr": 0.02730348459906944
|
233 |
+
},
|
234 |
+
"harness|hendrycksTest-human_aging|5": {
|
235 |
+
"acc": 0.6816143497757847,
|
236 |
+
"acc_stderr": 0.03126580522513713,
|
237 |
+
"acc_norm": 0.6816143497757847,
|
238 |
+
"acc_norm_stderr": 0.03126580522513713
|
239 |
+
},
|
240 |
+
"harness|hendrycksTest-human_sexuality|5": {
|
241 |
+
"acc": 0.7862595419847328,
|
242 |
+
"acc_stderr": 0.0359546161177469,
|
243 |
+
"acc_norm": 0.7862595419847328,
|
244 |
+
"acc_norm_stderr": 0.0359546161177469
|
245 |
+
},
|
246 |
+
"harness|hendrycksTest-international_law|5": {
|
247 |
+
"acc": 0.7851239669421488,
|
248 |
+
"acc_stderr": 0.037494924487096966,
|
249 |
+
"acc_norm": 0.7851239669421488,
|
250 |
+
"acc_norm_stderr": 0.037494924487096966
|
251 |
+
},
|
252 |
+
"harness|hendrycksTest-jurisprudence|5": {
|
253 |
+
"acc": 0.7777777777777778,
|
254 |
+
"acc_stderr": 0.0401910747255735,
|
255 |
+
"acc_norm": 0.7777777777777778,
|
256 |
+
"acc_norm_stderr": 0.0401910747255735
|
257 |
+
},
|
258 |
+
"harness|hendrycksTest-logical_fallacies|5": {
|
259 |
+
"acc": 0.7423312883435583,
|
260 |
+
"acc_stderr": 0.03436150827846917,
|
261 |
+
"acc_norm": 0.7423312883435583,
|
262 |
+
"acc_norm_stderr": 0.03436150827846917
|
263 |
+
},
|
264 |
+
"harness|hendrycksTest-machine_learning|5": {
|
265 |
+
"acc": 0.42857142857142855,
|
266 |
+
"acc_stderr": 0.04697113923010212,
|
267 |
+
"acc_norm": 0.42857142857142855,
|
268 |
+
"acc_norm_stderr": 0.04697113923010212
|
269 |
+
},
|
270 |
+
"harness|hendrycksTest-management|5": {
|
271 |
+
"acc": 0.7475728155339806,
|
272 |
+
"acc_stderr": 0.04301250399690878,
|
273 |
+
"acc_norm": 0.7475728155339806,
|
274 |
+
"acc_norm_stderr": 0.04301250399690878
|
275 |
+
},
|
276 |
+
"harness|hendrycksTest-marketing|5": {
|
277 |
+
"acc": 0.8846153846153846,
|
278 |
+
"acc_stderr": 0.02093019318517933,
|
279 |
+
"acc_norm": 0.8846153846153846,
|
280 |
+
"acc_norm_stderr": 0.02093019318517933
|
281 |
+
},
|
282 |
+
"harness|hendrycksTest-medical_genetics|5": {
|
283 |
+
"acc": 0.7,
|
284 |
+
"acc_stderr": 0.046056618647183814,
|
285 |
+
"acc_norm": 0.7,
|
286 |
+
"acc_norm_stderr": 0.046056618647183814
|
287 |
+
},
|
288 |
+
"harness|hendrycksTest-miscellaneous|5": {
|
289 |
+
"acc": 0.80970625798212,
|
290 |
+
"acc_stderr": 0.014036945850381396,
|
291 |
+
"acc_norm": 0.80970625798212,
|
292 |
+
"acc_norm_stderr": 0.014036945850381396
|
293 |
+
},
|
294 |
+
"harness|hendrycksTest-moral_disputes|5": {
|
295 |
+
"acc": 0.7369942196531792,
|
296 |
+
"acc_stderr": 0.023703099525258172,
|
297 |
+
"acc_norm": 0.7369942196531792,
|
298 |
+
"acc_norm_stderr": 0.023703099525258172
|
299 |
+
},
|
300 |
+
"harness|hendrycksTest-moral_scenarios|5": {
|
301 |
+
"acc": 0.47150837988826816,
|
302 |
+
"acc_stderr": 0.016695329746015796,
|
303 |
+
"acc_norm": 0.47150837988826816,
|
304 |
+
"acc_norm_stderr": 0.016695329746015796
|
305 |
+
},
|
306 |
+
"harness|hendrycksTest-nutrition|5": {
|
307 |
+
"acc": 0.7189542483660131,
|
308 |
+
"acc_stderr": 0.025738854797818733,
|
309 |
+
"acc_norm": 0.7189542483660131,
|
310 |
+
"acc_norm_stderr": 0.025738854797818733
|
311 |
+
},
|
312 |
+
"harness|hendrycksTest-philosophy|5": {
|
313 |
+
"acc": 0.7170418006430869,
|
314 |
+
"acc_stderr": 0.025583062489984813,
|
315 |
+
"acc_norm": 0.7170418006430869,
|
316 |
+
"acc_norm_stderr": 0.025583062489984813
|
317 |
+
},
|
318 |
+
"harness|hendrycksTest-prehistory|5": {
|
319 |
+
"acc": 0.7407407407407407,
|
320 |
+
"acc_stderr": 0.024383665531035457,
|
321 |
+
"acc_norm": 0.7407407407407407,
|
322 |
+
"acc_norm_stderr": 0.024383665531035457
|
323 |
+
},
|
324 |
+
"harness|hendrycksTest-professional_accounting|5": {
|
325 |
+
"acc": 0.475177304964539,
|
326 |
+
"acc_stderr": 0.029790719243829727,
|
327 |
+
"acc_norm": 0.475177304964539,
|
328 |
+
"acc_norm_stderr": 0.029790719243829727
|
329 |
+
},
|
330 |
+
"harness|hendrycksTest-professional_law|5": {
|
331 |
+
"acc": 0.470013037809648,
|
332 |
+
"acc_stderr": 0.01274724896707906,
|
333 |
+
"acc_norm": 0.470013037809648,
|
334 |
+
"acc_norm_stderr": 0.01274724896707906
|
335 |
+
},
|
336 |
+
"harness|hendrycksTest-professional_medicine|5": {
|
337 |
+
"acc": 0.6691176470588235,
|
338 |
+
"acc_stderr": 0.028582709753898445,
|
339 |
+
"acc_norm": 0.6691176470588235,
|
340 |
+
"acc_norm_stderr": 0.028582709753898445
|
341 |
+
},
|
342 |
+
"harness|hendrycksTest-professional_psychology|5": {
|
343 |
+
"acc": 0.6584967320261438,
|
344 |
+
"acc_stderr": 0.019184639328092487,
|
345 |
+
"acc_norm": 0.6584967320261438,
|
346 |
+
"acc_norm_stderr": 0.019184639328092487
|
347 |
+
},
|
348 |
+
"harness|hendrycksTest-public_relations|5": {
|
349 |
+
"acc": 0.6818181818181818,
|
350 |
+
"acc_stderr": 0.044612721759105085,
|
351 |
+
"acc_norm": 0.6818181818181818,
|
352 |
+
"acc_norm_stderr": 0.044612721759105085
|
353 |
+
},
|
354 |
+
"harness|hendrycksTest-security_studies|5": {
|
355 |
+
"acc": 0.7306122448979592,
|
356 |
+
"acc_stderr": 0.02840125202902294,
|
357 |
+
"acc_norm": 0.7306122448979592,
|
358 |
+
"acc_norm_stderr": 0.02840125202902294
|
359 |
+
},
|
360 |
+
"harness|hendrycksTest-sociology|5": {
|
361 |
+
"acc": 0.835820895522388,
|
362 |
+
"acc_stderr": 0.026193923544454125,
|
363 |
+
"acc_norm": 0.835820895522388,
|
364 |
+
"acc_norm_stderr": 0.026193923544454125
|
365 |
+
},
|
366 |
+
"harness|hendrycksTest-us_foreign_policy|5": {
|
367 |
+
"acc": 0.85,
|
368 |
+
"acc_stderr": 0.03588702812826371,
|
369 |
+
"acc_norm": 0.85,
|
370 |
+
"acc_norm_stderr": 0.03588702812826371
|
371 |
+
},
|
372 |
+
"harness|hendrycksTest-virology|5": {
|
373 |
+
"acc": 0.5542168674698795,
|
374 |
+
"acc_stderr": 0.03869543323472101,
|
375 |
+
"acc_norm": 0.5542168674698795,
|
376 |
+
"acc_norm_stderr": 0.03869543323472101
|
377 |
+
},
|
378 |
+
"harness|hendrycksTest-world_religions|5": {
|
379 |
+
"acc": 0.8245614035087719,
|
380 |
+
"acc_stderr": 0.029170885500727665,
|
381 |
+
"acc_norm": 0.8245614035087719,
|
382 |
+
"acc_norm_stderr": 0.029170885500727665
|
383 |
+
},
|
384 |
+
"harness|truthfulqa:mc|0": {
|
385 |
+
"mc1": 0.5862913096695227,
|
386 |
+
"mc1_stderr": 0.0172408618120998,
|
387 |
+
"mc2": 0.7078078883926877,
|
388 |
+
"mc2_stderr": 0.015097515102384168
|
389 |
+
},
|
390 |
+
"harness|winogrande|5": {
|
391 |
+
"acc": 0.8579321231254933,
|
392 |
+
"acc_stderr": 0.009812000391679367
|
393 |
+
},
|
394 |
+
"harness|gsm8k|5": {
|
395 |
+
"acc": 0.6648976497346475,
|
396 |
+
"acc_stderr": 0.013001948176422954
|
397 |
+
}
|
398 |
+
}
|
399 |
+
```
|