MayBashendy commited on
Commit
d467f14
·
verified ·
1 Parent(s): cf0d18e

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +369 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Arabic_FineTuningAraBERT_AugV4-trial2_k3_task1_organization_fold1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Arabic_FineTuningAraBERT_AugV4-trial2_k3_task1_organization_fold1
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7691
19
+ - Qwk: 0.7556
20
+ - Mse: 0.7691
21
+ - Rmse: 0.8770
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0323 | 2 | 5.4654 | -0.0084 | 5.4654 | 2.3378 |
53
+ | No log | 0.0645 | 4 | 2.9389 | -0.0274 | 2.9389 | 1.7143 |
54
+ | No log | 0.0968 | 6 | 2.4211 | 0.0534 | 2.4211 | 1.5560 |
55
+ | No log | 0.1290 | 8 | 1.1725 | 0.0800 | 1.1725 | 1.0828 |
56
+ | No log | 0.1613 | 10 | 0.9191 | 0.1043 | 0.9191 | 0.9587 |
57
+ | No log | 0.1935 | 12 | 1.0892 | 0.1105 | 1.0892 | 1.0437 |
58
+ | No log | 0.2258 | 14 | 1.2460 | -0.1595 | 1.2460 | 1.1162 |
59
+ | No log | 0.2581 | 16 | 1.4356 | 0.0 | 1.4356 | 1.1982 |
60
+ | No log | 0.2903 | 18 | 1.1836 | 0.2125 | 1.1836 | 1.0879 |
61
+ | No log | 0.3226 | 20 | 0.8255 | 0.2921 | 0.8255 | 0.9086 |
62
+ | No log | 0.3548 | 22 | 0.7538 | 0.1910 | 0.7538 | 0.8682 |
63
+ | No log | 0.3871 | 24 | 0.7679 | 0.2888 | 0.7679 | 0.8763 |
64
+ | No log | 0.4194 | 26 | 0.7280 | 0.1429 | 0.7280 | 0.8532 |
65
+ | No log | 0.4516 | 28 | 0.7130 | 0.3109 | 0.7130 | 0.8444 |
66
+ | No log | 0.4839 | 30 | 0.7916 | 0.3708 | 0.7916 | 0.8897 |
67
+ | No log | 0.5161 | 32 | 0.8720 | 0.5444 | 0.8720 | 0.9338 |
68
+ | No log | 0.5484 | 34 | 0.7941 | 0.5444 | 0.7941 | 0.8911 |
69
+ | No log | 0.5806 | 36 | 0.6795 | 0.5625 | 0.6795 | 0.8243 |
70
+ | No log | 0.6129 | 38 | 0.4508 | 0.5604 | 0.4508 | 0.6714 |
71
+ | No log | 0.6452 | 40 | 0.4166 | 0.5977 | 0.4166 | 0.6455 |
72
+ | No log | 0.6774 | 42 | 0.4616 | 0.6026 | 0.4616 | 0.6794 |
73
+ | No log | 0.7097 | 44 | 0.9631 | 0.7605 | 0.9631 | 0.9814 |
74
+ | No log | 0.7419 | 46 | 1.1904 | 0.6769 | 1.1904 | 1.0910 |
75
+ | No log | 0.7742 | 48 | 0.8212 | 0.6695 | 0.8212 | 0.9062 |
76
+ | No log | 0.8065 | 50 | 0.4403 | 0.5505 | 0.4403 | 0.6636 |
77
+ | No log | 0.8387 | 52 | 0.4270 | 0.5749 | 0.4270 | 0.6534 |
78
+ | No log | 0.8710 | 54 | 0.4775 | 0.5604 | 0.4775 | 0.6910 |
79
+ | No log | 0.9032 | 56 | 0.6962 | 0.58 | 0.6962 | 0.8344 |
80
+ | No log | 0.9355 | 58 | 0.6676 | 0.5926 | 0.6676 | 0.8170 |
81
+ | No log | 0.9677 | 60 | 0.8135 | 0.4670 | 0.8135 | 0.9019 |
82
+ | No log | 1.0 | 62 | 1.0277 | 0.5205 | 1.0277 | 1.0138 |
83
+ | No log | 1.0323 | 64 | 0.9334 | 0.5205 | 0.9334 | 0.9661 |
84
+ | No log | 1.0645 | 66 | 0.8655 | 0.5205 | 0.8655 | 0.9303 |
85
+ | No log | 1.0968 | 68 | 0.6498 | 0.6818 | 0.6498 | 0.8061 |
86
+ | No log | 1.1290 | 70 | 0.4322 | 0.6516 | 0.4322 | 0.6574 |
87
+ | No log | 1.1613 | 72 | 0.5234 | 0.6751 | 0.5234 | 0.7235 |
88
+ | No log | 1.1935 | 74 | 0.9400 | 0.5586 | 0.9400 | 0.9696 |
89
+ | No log | 1.2258 | 76 | 0.9654 | 0.5739 | 0.9654 | 0.9825 |
90
+ | No log | 1.2581 | 78 | 0.6458 | 0.7273 | 0.6458 | 0.8036 |
91
+ | No log | 1.2903 | 80 | 0.4438 | 0.5882 | 0.4438 | 0.6662 |
92
+ | No log | 1.3226 | 82 | 0.5054 | 0.6128 | 0.5054 | 0.7109 |
93
+ | No log | 1.3548 | 84 | 0.8436 | 0.5205 | 0.8436 | 0.9185 |
94
+ | No log | 1.3871 | 86 | 1.3434 | 0.5 | 1.3434 | 1.1591 |
95
+ | No log | 1.4194 | 88 | 1.5346 | 0.4615 | 1.5346 | 1.2388 |
96
+ | No log | 1.4516 | 90 | 1.2637 | 0.5 | 1.2637 | 1.1242 |
97
+ | No log | 1.4839 | 92 | 0.9030 | 0.5882 | 0.9030 | 0.9502 |
98
+ | No log | 1.5161 | 94 | 0.8080 | 0.5850 | 0.8080 | 0.8989 |
99
+ | No log | 1.5484 | 96 | 0.8119 | 0.5494 | 0.8119 | 0.9010 |
100
+ | No log | 1.5806 | 98 | 0.9305 | 0.5984 | 0.9305 | 0.9646 |
101
+ | No log | 1.6129 | 100 | 0.7445 | 0.7407 | 0.7445 | 0.8629 |
102
+ | No log | 1.6452 | 102 | 0.6353 | 0.6013 | 0.6353 | 0.7970 |
103
+ | No log | 1.6774 | 104 | 0.6552 | 0.5933 | 0.6552 | 0.8095 |
104
+ | No log | 1.7097 | 106 | 0.7825 | 0.7651 | 0.7825 | 0.8846 |
105
+ | No log | 1.7419 | 108 | 0.9722 | 0.5704 | 0.9722 | 0.9860 |
106
+ | No log | 1.7742 | 110 | 1.0410 | 0.5704 | 1.0410 | 1.0203 |
107
+ | No log | 1.8065 | 112 | 0.9591 | 0.6500 | 0.9591 | 0.9793 |
108
+ | No log | 1.8387 | 114 | 0.6479 | 0.6013 | 0.6479 | 0.8049 |
109
+ | No log | 1.8710 | 116 | 0.5902 | 0.6159 | 0.5902 | 0.7683 |
110
+ | No log | 1.9032 | 118 | 0.5823 | 0.64 | 0.5823 | 0.7631 |
111
+ | No log | 1.9355 | 120 | 0.6977 | 0.6729 | 0.6977 | 0.8353 |
112
+ | No log | 1.9677 | 122 | 0.8988 | 0.6465 | 0.8988 | 0.9481 |
113
+ | No log | 2.0 | 124 | 0.8363 | 0.7336 | 0.8363 | 0.9145 |
114
+ | No log | 2.0323 | 126 | 0.8096 | 0.7336 | 0.8096 | 0.8998 |
115
+ | No log | 2.0645 | 128 | 0.5682 | 0.6606 | 0.5682 | 0.7538 |
116
+ | No log | 2.0968 | 130 | 0.5051 | 0.6364 | 0.5051 | 0.7107 |
117
+ | No log | 2.1290 | 132 | 0.5651 | 0.7850 | 0.5651 | 0.7517 |
118
+ | No log | 2.1613 | 134 | 0.8077 | 0.7336 | 0.8077 | 0.8987 |
119
+ | No log | 2.1935 | 136 | 1.2183 | 0.6488 | 1.2183 | 1.1038 |
120
+ | No log | 2.2258 | 138 | 1.2208 | 0.6488 | 1.2208 | 1.1049 |
121
+ | No log | 2.2581 | 140 | 0.9989 | 0.5993 | 0.9989 | 0.9994 |
122
+ | No log | 2.2903 | 142 | 0.7006 | 0.7101 | 0.7006 | 0.8370 |
123
+ | No log | 2.3226 | 144 | 0.5902 | 0.6708 | 0.5902 | 0.7682 |
124
+ | No log | 2.3548 | 146 | 0.5922 | 0.7425 | 0.5922 | 0.7696 |
125
+ | No log | 2.3871 | 148 | 0.7149 | 0.7971 | 0.7149 | 0.8455 |
126
+ | No log | 2.4194 | 150 | 0.9092 | 0.6784 | 0.9092 | 0.9535 |
127
+ | No log | 2.4516 | 152 | 0.9905 | 0.6000 | 0.9905 | 0.9952 |
128
+ | No log | 2.4839 | 154 | 0.8403 | 0.6531 | 0.8403 | 0.9167 |
129
+ | No log | 2.5161 | 156 | 0.7925 | 0.6500 | 0.7925 | 0.8902 |
130
+ | No log | 2.5484 | 158 | 0.7642 | 0.7101 | 0.7642 | 0.8742 |
131
+ | No log | 2.5806 | 160 | 0.7893 | 0.6590 | 0.7893 | 0.8884 |
132
+ | No log | 2.6129 | 162 | 0.9472 | 0.6441 | 0.9472 | 0.9733 |
133
+ | No log | 2.6452 | 164 | 1.1662 | 0.6818 | 1.1662 | 1.0799 |
134
+ | No log | 2.6774 | 166 | 1.1924 | 0.6111 | 1.1924 | 1.0920 |
135
+ | No log | 2.7097 | 168 | 1.0156 | 0.6818 | 1.0156 | 1.0077 |
136
+ | No log | 2.7419 | 170 | 0.8598 | 0.7375 | 0.8598 | 0.9273 |
137
+ | No log | 2.7742 | 172 | 0.6945 | 0.6866 | 0.6945 | 0.8334 |
138
+ | No log | 2.8065 | 174 | 0.6215 | 0.5833 | 0.6215 | 0.7884 |
139
+ | No log | 2.8387 | 176 | 0.5751 | 0.6316 | 0.5751 | 0.7584 |
140
+ | No log | 2.8710 | 178 | 0.5781 | 0.6364 | 0.5781 | 0.7603 |
141
+ | No log | 2.9032 | 180 | 0.7905 | 0.6564 | 0.7905 | 0.8891 |
142
+ | No log | 2.9355 | 182 | 1.0873 | 0.6433 | 1.0873 | 1.0428 |
143
+ | No log | 2.9677 | 184 | 1.1451 | 0.6715 | 1.1451 | 1.0701 |
144
+ | No log | 3.0 | 186 | 0.8595 | 0.7138 | 0.8595 | 0.9271 |
145
+ | No log | 3.0323 | 188 | 0.7103 | 0.6719 | 0.7103 | 0.8428 |
146
+ | No log | 3.0645 | 190 | 0.6738 | 0.6957 | 0.6738 | 0.8208 |
147
+ | No log | 3.0968 | 192 | 0.6972 | 0.7317 | 0.6972 | 0.8350 |
148
+ | No log | 3.1290 | 194 | 0.6583 | 0.7217 | 0.6583 | 0.8114 |
149
+ | No log | 3.1613 | 196 | 0.6754 | 0.6270 | 0.6754 | 0.8218 |
150
+ | No log | 3.1935 | 198 | 0.7435 | 0.6606 | 0.7435 | 0.8623 |
151
+ | No log | 3.2258 | 200 | 0.9383 | 0.6939 | 0.9383 | 0.9687 |
152
+ | No log | 3.2581 | 202 | 1.1949 | 0.5417 | 1.1949 | 1.0931 |
153
+ | No log | 3.2903 | 204 | 1.2126 | 0.5831 | 1.2126 | 1.1012 |
154
+ | No log | 3.3226 | 206 | 1.1257 | 0.5909 | 1.1257 | 1.0610 |
155
+ | No log | 3.3548 | 208 | 0.7978 | 0.6797 | 0.7978 | 0.8932 |
156
+ | No log | 3.3871 | 210 | 0.5966 | 0.6291 | 0.5966 | 0.7724 |
157
+ | No log | 3.4194 | 212 | 0.5812 | 0.6291 | 0.5812 | 0.7624 |
158
+ | No log | 3.4516 | 214 | 0.6803 | 0.7317 | 0.6803 | 0.8248 |
159
+ | No log | 3.4839 | 216 | 0.8308 | 0.7055 | 0.8308 | 0.9115 |
160
+ | No log | 3.5161 | 218 | 0.8697 | 0.7055 | 0.8697 | 0.9326 |
161
+ | No log | 3.5484 | 220 | 0.7570 | 0.6866 | 0.7570 | 0.8701 |
162
+ | No log | 3.5806 | 222 | 0.7803 | 0.6866 | 0.7803 | 0.8833 |
163
+ | No log | 3.6129 | 224 | 0.8974 | 0.6939 | 0.8974 | 0.9473 |
164
+ | No log | 3.6452 | 226 | 0.9042 | 0.6939 | 0.9042 | 0.9509 |
165
+ | No log | 3.6774 | 228 | 1.1174 | 0.6159 | 1.1174 | 1.0571 |
166
+ | No log | 3.7097 | 230 | 1.2909 | 0.6216 | 1.2909 | 1.1362 |
167
+ | No log | 3.7419 | 232 | 1.2414 | 0.6316 | 1.2414 | 1.1142 |
168
+ | No log | 3.7742 | 234 | 0.9598 | 0.7368 | 0.9598 | 0.9797 |
169
+ | No log | 3.8065 | 236 | 0.6726 | 0.8063 | 0.6726 | 0.8201 |
170
+ | No log | 3.8387 | 238 | 0.4825 | 0.7004 | 0.4825 | 0.6946 |
171
+ | No log | 3.8710 | 240 | 0.4530 | 0.6873 | 0.4530 | 0.6731 |
172
+ | No log | 3.9032 | 242 | 0.5138 | 0.6873 | 0.5138 | 0.7168 |
173
+ | No log | 3.9355 | 244 | 0.7271 | 0.7181 | 0.7271 | 0.8527 |
174
+ | No log | 3.9677 | 246 | 0.8967 | 0.7459 | 0.8967 | 0.9470 |
175
+ | No log | 4.0 | 248 | 0.9334 | 0.6500 | 0.9334 | 0.9661 |
176
+ | No log | 4.0323 | 250 | 0.9986 | 0.6624 | 0.9986 | 0.9993 |
177
+ | No log | 4.0645 | 252 | 0.8978 | 0.6749 | 0.8978 | 0.9475 |
178
+ | No log | 4.0968 | 254 | 0.7266 | 0.7799 | 0.7266 | 0.8524 |
179
+ | No log | 4.1290 | 256 | 0.5871 | 0.7217 | 0.5871 | 0.7662 |
180
+ | No log | 4.1613 | 258 | 0.5844 | 0.7742 | 0.5844 | 0.7644 |
181
+ | No log | 4.1935 | 260 | 0.7206 | 0.7181 | 0.7206 | 0.8489 |
182
+ | No log | 4.2258 | 262 | 1.0205 | 0.6715 | 1.0205 | 1.0102 |
183
+ | No log | 4.2581 | 264 | 1.1666 | 0.5912 | 1.1666 | 1.0801 |
184
+ | No log | 4.2903 | 266 | 1.0884 | 0.6540 | 1.0884 | 1.0433 |
185
+ | No log | 4.3226 | 268 | 0.9341 | 0.7368 | 0.9341 | 0.9665 |
186
+ | No log | 4.3548 | 270 | 0.7585 | 0.7181 | 0.7585 | 0.8709 |
187
+ | No log | 4.3871 | 272 | 0.7651 | 0.7556 | 0.7651 | 0.8747 |
188
+ | No log | 4.4194 | 274 | 0.8432 | 0.7556 | 0.8432 | 0.9183 |
189
+ | No log | 4.4516 | 276 | 0.8030 | 0.7358 | 0.8030 | 0.8961 |
190
+ | No log | 4.4839 | 278 | 0.8462 | 0.7111 | 0.8462 | 0.9199 |
191
+ | No log | 4.5161 | 280 | 1.0494 | 0.6433 | 1.0494 | 1.0244 |
192
+ | No log | 4.5484 | 282 | 1.1306 | 0.6667 | 1.1306 | 1.0633 |
193
+ | No log | 4.5806 | 284 | 0.9776 | 0.6246 | 0.9776 | 0.9887 |
194
+ | No log | 4.6129 | 286 | 0.7563 | 0.7111 | 0.7563 | 0.8697 |
195
+ | No log | 4.6452 | 288 | 0.6590 | 0.7237 | 0.6590 | 0.8118 |
196
+ | No log | 4.6774 | 290 | 0.6033 | 0.6899 | 0.6033 | 0.7767 |
197
+ | No log | 4.7097 | 292 | 0.6456 | 0.7742 | 0.6456 | 0.8035 |
198
+ | No log | 4.7419 | 294 | 0.6789 | 0.7237 | 0.6789 | 0.8240 |
199
+ | No log | 4.7742 | 296 | 0.8759 | 0.6851 | 0.8759 | 0.9359 |
200
+ | No log | 4.8065 | 298 | 1.0386 | 0.6715 | 1.0386 | 1.0191 |
201
+ | No log | 4.8387 | 300 | 0.9957 | 0.6715 | 0.9957 | 0.9979 |
202
+ | No log | 4.8710 | 302 | 0.8950 | 0.6851 | 0.8950 | 0.9460 |
203
+ | No log | 4.9032 | 304 | 0.7657 | 0.6602 | 0.7657 | 0.8750 |
204
+ | No log | 4.9355 | 306 | 0.6828 | 0.7492 | 0.6828 | 0.8263 |
205
+ | No log | 4.9677 | 308 | 0.6800 | 0.7492 | 0.6800 | 0.8246 |
206
+ | No log | 5.0 | 310 | 0.7761 | 0.7358 | 0.7761 | 0.8810 |
207
+ | No log | 5.0323 | 312 | 0.9034 | 0.6706 | 0.9034 | 0.9505 |
208
+ | No log | 5.0645 | 314 | 0.9601 | 0.6706 | 0.9601 | 0.9799 |
209
+ | No log | 5.0968 | 316 | 0.9657 | 0.6706 | 0.9657 | 0.9827 |
210
+ | No log | 5.1290 | 318 | 0.8873 | 0.6763 | 0.8873 | 0.9420 |
211
+ | No log | 5.1613 | 320 | 0.8760 | 0.7234 | 0.8760 | 0.9360 |
212
+ | No log | 5.1935 | 322 | 0.8005 | 0.7234 | 0.8005 | 0.8947 |
213
+ | No log | 5.2258 | 324 | 0.7739 | 0.6994 | 0.7739 | 0.8797 |
214
+ | No log | 5.2581 | 326 | 0.7251 | 0.7358 | 0.7251 | 0.8515 |
215
+ | No log | 5.2903 | 328 | 0.7335 | 0.7111 | 0.7335 | 0.8564 |
216
+ | No log | 5.3226 | 330 | 0.8391 | 0.6602 | 0.8391 | 0.9160 |
217
+ | No log | 5.3548 | 332 | 0.8511 | 0.6602 | 0.8511 | 0.9225 |
218
+ | No log | 5.3871 | 334 | 0.7769 | 0.6602 | 0.7769 | 0.8814 |
219
+ | No log | 5.4194 | 336 | 0.6752 | 0.6859 | 0.6752 | 0.8217 |
220
+ | No log | 5.4516 | 338 | 0.6052 | 0.6894 | 0.6052 | 0.7780 |
221
+ | No log | 5.4839 | 340 | 0.6284 | 0.6977 | 0.6284 | 0.7927 |
222
+ | No log | 5.5161 | 342 | 0.6861 | 0.6602 | 0.6861 | 0.8283 |
223
+ | No log | 5.5484 | 344 | 0.7704 | 0.6797 | 0.7704 | 0.8777 |
224
+ | No log | 5.5806 | 346 | 0.7989 | 0.6797 | 0.7989 | 0.8938 |
225
+ | No log | 5.6129 | 348 | 0.8850 | 0.6797 | 0.8850 | 0.9408 |
226
+ | No log | 5.6452 | 350 | 0.8503 | 0.6797 | 0.8503 | 0.9221 |
227
+ | No log | 5.6774 | 352 | 0.7948 | 0.6797 | 0.7948 | 0.8915 |
228
+ | No log | 5.7097 | 354 | 0.7781 | 0.6797 | 0.7781 | 0.8821 |
229
+ | No log | 5.7419 | 356 | 0.7849 | 0.6859 | 0.7849 | 0.8860 |
230
+ | No log | 5.7742 | 358 | 0.7745 | 0.6859 | 0.7745 | 0.8800 |
231
+ | No log | 5.8065 | 360 | 0.8304 | 0.6797 | 0.8304 | 0.9112 |
232
+ | No log | 5.8387 | 362 | 0.9188 | 0.6997 | 0.9188 | 0.9585 |
233
+ | No log | 5.8710 | 364 | 0.9660 | 0.6997 | 0.9660 | 0.9829 |
234
+ | No log | 5.9032 | 366 | 0.8800 | 0.6997 | 0.8800 | 0.9381 |
235
+ | No log | 5.9355 | 368 | 0.7508 | 0.6915 | 0.7508 | 0.8665 |
236
+ | No log | 5.9677 | 370 | 0.5910 | 0.7237 | 0.5910 | 0.7688 |
237
+ | No log | 6.0 | 372 | 0.5559 | 0.6807 | 0.5559 | 0.7456 |
238
+ | No log | 6.0323 | 374 | 0.6213 | 0.6829 | 0.6213 | 0.7882 |
239
+ | No log | 6.0645 | 376 | 0.6954 | 0.7042 | 0.6954 | 0.8339 |
240
+ | No log | 6.0968 | 378 | 0.7794 | 0.7586 | 0.7794 | 0.8829 |
241
+ | No log | 6.1290 | 380 | 0.7734 | 0.6915 | 0.7734 | 0.8795 |
242
+ | No log | 6.1613 | 382 | 0.7239 | 0.7308 | 0.7239 | 0.8508 |
243
+ | No log | 6.1935 | 384 | 0.6846 | 0.7237 | 0.6846 | 0.8274 |
244
+ | No log | 6.2258 | 386 | 0.7382 | 0.7111 | 0.7382 | 0.8592 |
245
+ | No log | 6.2581 | 388 | 0.7576 | 0.7111 | 0.7576 | 0.8704 |
246
+ | No log | 6.2903 | 390 | 0.7988 | 0.7183 | 0.7988 | 0.8938 |
247
+ | No log | 6.3226 | 392 | 0.8201 | 0.6797 | 0.8201 | 0.9056 |
248
+ | No log | 6.3548 | 394 | 0.8680 | 0.6797 | 0.8680 | 0.9317 |
249
+ | No log | 6.3871 | 396 | 0.8397 | 0.6797 | 0.8397 | 0.9164 |
250
+ | No log | 6.4194 | 398 | 0.8409 | 0.6797 | 0.8409 | 0.9170 |
251
+ | No log | 6.4516 | 400 | 0.8376 | 0.6912 | 0.8376 | 0.9152 |
252
+ | No log | 6.4839 | 402 | 0.8764 | 0.7138 | 0.8764 | 0.9362 |
253
+ | No log | 6.5161 | 404 | 0.8888 | 0.7368 | 0.8888 | 0.9428 |
254
+ | No log | 6.5484 | 406 | 0.8105 | 0.6912 | 0.8105 | 0.9003 |
255
+ | No log | 6.5806 | 408 | 0.6884 | 0.6829 | 0.6884 | 0.8297 |
256
+ | No log | 6.6129 | 410 | 0.6414 | 0.6449 | 0.6414 | 0.8009 |
257
+ | No log | 6.6452 | 412 | 0.6667 | 0.6829 | 0.6667 | 0.8165 |
258
+ | No log | 6.6774 | 414 | 0.7308 | 0.6915 | 0.7308 | 0.8549 |
259
+ | No log | 6.7097 | 416 | 0.8018 | 0.6797 | 0.8018 | 0.8954 |
260
+ | No log | 6.7419 | 418 | 0.8533 | 0.6997 | 0.8533 | 0.9237 |
261
+ | No log | 6.7742 | 420 | 0.8687 | 0.6997 | 0.8687 | 0.9320 |
262
+ | No log | 6.8065 | 422 | 0.8866 | 0.6997 | 0.8866 | 0.9416 |
263
+ | No log | 6.8387 | 424 | 0.8247 | 0.6797 | 0.8247 | 0.9081 |
264
+ | No log | 6.8710 | 426 | 0.7424 | 0.6797 | 0.7424 | 0.8616 |
265
+ | No log | 6.9032 | 428 | 0.6995 | 0.7183 | 0.6995 | 0.8364 |
266
+ | No log | 6.9355 | 430 | 0.7218 | 0.7183 | 0.7218 | 0.8496 |
267
+ | No log | 6.9677 | 432 | 0.7105 | 0.7423 | 0.7105 | 0.8429 |
268
+ | No log | 7.0 | 434 | 0.6837 | 0.7492 | 0.6837 | 0.8269 |
269
+ | No log | 7.0323 | 436 | 0.6724 | 0.7492 | 0.6724 | 0.8200 |
270
+ | No log | 7.0645 | 438 | 0.6289 | 0.7492 | 0.6289 | 0.7930 |
271
+ | No log | 7.0968 | 440 | 0.5798 | 0.7492 | 0.5798 | 0.7614 |
272
+ | No log | 7.1290 | 442 | 0.6127 | 0.7492 | 0.6127 | 0.7827 |
273
+ | No log | 7.1613 | 444 | 0.6910 | 0.7317 | 0.6910 | 0.8312 |
274
+ | No log | 7.1935 | 446 | 0.7521 | 0.6997 | 0.7521 | 0.8673 |
275
+ | No log | 7.2258 | 448 | 0.8010 | 0.6997 | 0.8010 | 0.8950 |
276
+ | No log | 7.2581 | 450 | 0.8147 | 0.6997 | 0.8147 | 0.9026 |
277
+ | No log | 7.2903 | 452 | 0.8653 | 0.7063 | 0.8653 | 0.9302 |
278
+ | No log | 7.3226 | 454 | 0.9418 | 0.7138 | 0.9418 | 0.9705 |
279
+ | No log | 7.3548 | 456 | 0.9477 | 0.7138 | 0.9477 | 0.9735 |
280
+ | No log | 7.3871 | 458 | 0.8615 | 0.7063 | 0.8615 | 0.9282 |
281
+ | No log | 7.4194 | 460 | 0.7263 | 0.7556 | 0.7263 | 0.8523 |
282
+ | No log | 7.4516 | 462 | 0.6625 | 0.7492 | 0.6625 | 0.8140 |
283
+ | No log | 7.4839 | 464 | 0.6527 | 0.7492 | 0.6527 | 0.8079 |
284
+ | No log | 7.5161 | 466 | 0.6628 | 0.7492 | 0.6628 | 0.8141 |
285
+ | No log | 7.5484 | 468 | 0.6979 | 0.7358 | 0.6979 | 0.8354 |
286
+ | No log | 7.5806 | 470 | 0.7141 | 0.7358 | 0.7141 | 0.8450 |
287
+ | No log | 7.6129 | 472 | 0.7087 | 0.7358 | 0.7087 | 0.8419 |
288
+ | No log | 7.6452 | 474 | 0.7257 | 0.7358 | 0.7257 | 0.8519 |
289
+ | No log | 7.6774 | 476 | 0.7314 | 0.7358 | 0.7314 | 0.8552 |
290
+ | No log | 7.7097 | 478 | 0.7327 | 0.7358 | 0.7327 | 0.8560 |
291
+ | No log | 7.7419 | 480 | 0.7574 | 0.7358 | 0.7574 | 0.8703 |
292
+ | No log | 7.7742 | 482 | 0.8032 | 0.7556 | 0.8032 | 0.8962 |
293
+ | No log | 7.8065 | 484 | 0.8750 | 0.6997 | 0.8750 | 0.9354 |
294
+ | No log | 7.8387 | 486 | 0.8860 | 0.6997 | 0.8860 | 0.9413 |
295
+ | No log | 7.8710 | 488 | 0.8524 | 0.6997 | 0.8524 | 0.9233 |
296
+ | No log | 7.9032 | 490 | 0.7942 | 0.6915 | 0.7942 | 0.8912 |
297
+ | No log | 7.9355 | 492 | 0.7569 | 0.7308 | 0.7569 | 0.8700 |
298
+ | No log | 7.9677 | 494 | 0.7499 | 0.7308 | 0.7499 | 0.8660 |
299
+ | No log | 8.0 | 496 | 0.7736 | 0.6915 | 0.7736 | 0.8795 |
300
+ | No log | 8.0323 | 498 | 0.8173 | 0.6915 | 0.8173 | 0.9041 |
301
+ | 0.4321 | 8.0645 | 500 | 0.8389 | 0.6797 | 0.8389 | 0.9159 |
302
+ | 0.4321 | 8.0968 | 502 | 0.8209 | 0.6797 | 0.8209 | 0.9060 |
303
+ | 0.4321 | 8.1290 | 504 | 0.7715 | 0.6915 | 0.7715 | 0.8783 |
304
+ | 0.4321 | 8.1613 | 506 | 0.7382 | 0.6915 | 0.7382 | 0.8592 |
305
+ | 0.4321 | 8.1935 | 508 | 0.7283 | 0.7181 | 0.7283 | 0.8534 |
306
+ | 0.4321 | 8.2258 | 510 | 0.7071 | 0.7181 | 0.7071 | 0.8409 |
307
+ | 0.4321 | 8.2581 | 512 | 0.6800 | 0.7358 | 0.6800 | 0.8246 |
308
+ | 0.4321 | 8.2903 | 514 | 0.7026 | 0.7358 | 0.7026 | 0.8382 |
309
+ | 0.4321 | 8.3226 | 516 | 0.7168 | 0.7358 | 0.7168 | 0.8466 |
310
+ | 0.4321 | 8.3548 | 518 | 0.7472 | 0.7181 | 0.7472 | 0.8644 |
311
+ | 0.4321 | 8.3871 | 520 | 0.7955 | 0.7055 | 0.7955 | 0.8919 |
312
+ | 0.4321 | 8.4194 | 522 | 0.8137 | 0.7055 | 0.8137 | 0.9021 |
313
+ | 0.4321 | 8.4516 | 524 | 0.8329 | 0.7055 | 0.8329 | 0.9126 |
314
+ | 0.4321 | 8.4839 | 526 | 0.8204 | 0.7055 | 0.8204 | 0.9058 |
315
+ | 0.4321 | 8.5161 | 528 | 0.7784 | 0.7181 | 0.7784 | 0.8823 |
316
+ | 0.4321 | 8.5484 | 530 | 0.7667 | 0.7181 | 0.7667 | 0.8756 |
317
+ | 0.4321 | 8.5806 | 532 | 0.7379 | 0.7358 | 0.7379 | 0.8590 |
318
+ | 0.4321 | 8.6129 | 534 | 0.7241 | 0.7358 | 0.7241 | 0.8509 |
319
+ | 0.4321 | 8.6452 | 536 | 0.7391 | 0.7358 | 0.7391 | 0.8597 |
320
+ | 0.4321 | 8.6774 | 538 | 0.7527 | 0.7358 | 0.7527 | 0.8676 |
321
+ | 0.4321 | 8.7097 | 540 | 0.7960 | 0.7423 | 0.7960 | 0.8922 |
322
+ | 0.4321 | 8.7419 | 542 | 0.8570 | 0.7423 | 0.8570 | 0.9257 |
323
+ | 0.4321 | 8.7742 | 544 | 0.9277 | 0.6797 | 0.9277 | 0.9632 |
324
+ | 0.4321 | 8.8065 | 546 | 0.9700 | 0.6997 | 0.9700 | 0.9849 |
325
+ | 0.4321 | 8.8387 | 548 | 0.9806 | 0.6997 | 0.9806 | 0.9903 |
326
+ | 0.4321 | 8.8710 | 550 | 0.9767 | 0.72 | 0.9767 | 0.9883 |
327
+ | 0.4321 | 8.9032 | 552 | 0.9337 | 0.6997 | 0.9337 | 0.9663 |
328
+ | 0.4321 | 8.9355 | 554 | 0.8683 | 0.6797 | 0.8683 | 0.9318 |
329
+ | 0.4321 | 8.9677 | 556 | 0.7993 | 0.7423 | 0.7993 | 0.8940 |
330
+ | 0.4321 | 9.0 | 558 | 0.7446 | 0.7556 | 0.7446 | 0.8629 |
331
+ | 0.4321 | 9.0323 | 560 | 0.7113 | 0.7556 | 0.7113 | 0.8434 |
332
+ | 0.4321 | 9.0645 | 562 | 0.7032 | 0.7556 | 0.7032 | 0.8386 |
333
+ | 0.4321 | 9.0968 | 564 | 0.7076 | 0.7556 | 0.7076 | 0.8412 |
334
+ | 0.4321 | 9.1290 | 566 | 0.7116 | 0.7556 | 0.7116 | 0.8436 |
335
+ | 0.4321 | 9.1613 | 568 | 0.7174 | 0.7556 | 0.7174 | 0.8470 |
336
+ | 0.4321 | 9.1935 | 570 | 0.7436 | 0.7181 | 0.7436 | 0.8623 |
337
+ | 0.4321 | 9.2258 | 572 | 0.7829 | 0.6997 | 0.7829 | 0.8848 |
338
+ | 0.4321 | 9.2581 | 574 | 0.8117 | 0.72 | 0.8117 | 0.9009 |
339
+ | 0.4321 | 9.2903 | 576 | 0.8286 | 0.72 | 0.8286 | 0.9103 |
340
+ | 0.4321 | 9.3226 | 578 | 0.8559 | 0.72 | 0.8559 | 0.9252 |
341
+ | 0.4321 | 9.3548 | 580 | 0.8733 | 0.72 | 0.8733 | 0.9345 |
342
+ | 0.4321 | 9.3871 | 582 | 0.8698 | 0.72 | 0.8698 | 0.9326 |
343
+ | 0.4321 | 9.4194 | 584 | 0.8572 | 0.72 | 0.8572 | 0.9259 |
344
+ | 0.4321 | 9.4516 | 586 | 0.8365 | 0.72 | 0.8365 | 0.9146 |
345
+ | 0.4321 | 9.4839 | 588 | 0.8264 | 0.6997 | 0.8264 | 0.9091 |
346
+ | 0.4321 | 9.5161 | 590 | 0.8220 | 0.6997 | 0.8220 | 0.9066 |
347
+ | 0.4321 | 9.5484 | 592 | 0.8192 | 0.6997 | 0.8192 | 0.9051 |
348
+ | 0.4321 | 9.5806 | 594 | 0.8126 | 0.6997 | 0.8126 | 0.9014 |
349
+ | 0.4321 | 9.6129 | 596 | 0.8045 | 0.6997 | 0.8045 | 0.8970 |
350
+ | 0.4321 | 9.6452 | 598 | 0.7915 | 0.7390 | 0.7915 | 0.8897 |
351
+ | 0.4321 | 9.6774 | 600 | 0.7803 | 0.7390 | 0.7803 | 0.8834 |
352
+ | 0.4321 | 9.7097 | 602 | 0.7698 | 0.7181 | 0.7698 | 0.8774 |
353
+ | 0.4321 | 9.7419 | 604 | 0.7606 | 0.7556 | 0.7606 | 0.8721 |
354
+ | 0.4321 | 9.7742 | 606 | 0.7566 | 0.7556 | 0.7566 | 0.8698 |
355
+ | 0.4321 | 9.8065 | 608 | 0.7575 | 0.7556 | 0.7575 | 0.8703 |
356
+ | 0.4321 | 9.8387 | 610 | 0.7613 | 0.7556 | 0.7613 | 0.8725 |
357
+ | 0.4321 | 9.8710 | 612 | 0.7645 | 0.7556 | 0.7645 | 0.8744 |
358
+ | 0.4321 | 9.9032 | 614 | 0.7652 | 0.7556 | 0.7652 | 0.8748 |
359
+ | 0.4321 | 9.9355 | 616 | 0.7666 | 0.7556 | 0.7666 | 0.8755 |
360
+ | 0.4321 | 9.9677 | 618 | 0.7683 | 0.7556 | 0.7683 | 0.8765 |
361
+ | 0.4321 | 10.0 | 620 | 0.7691 | 0.7556 | 0.7691 | 0.8770 |
362
+
363
+
364
+ ### Framework versions
365
+
366
+ - Transformers 4.44.2
367
+ - Pytorch 2.4.0+cu118
368
+ - Datasets 2.21.0
369
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c300d5115e8b25b8f6e0c0270140f2bf5741dc5146fadc83c8394c70b91dbce0
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:198917047aba06a3fe9538e675372e36e14612e4d1717afb1f562a6d0f2739d4
3
+ size 5240