MayBashendy commited on
Commit
64289a1
·
verified ·
1 Parent(s): 5982508

Training in progress, step 450

Browse files
Files changed (4) hide show
  1. README.md +304 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Arabic_FineTuningAraBERT_AugV4-trial2_k2_task1_organization_fold0
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Arabic_FineTuningAraBERT_AugV4-trial2_k2_task1_organization_fold0
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7593
19
+ - Qwk: 0.8399
20
+ - Mse: 0.7593
21
+ - Rmse: 0.8714
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0408 | 2 | 5.1483 | 0.0 | 5.1483 | 2.2690 |
53
+ | No log | 0.0816 | 4 | 2.5989 | 0.1038 | 2.5989 | 1.6121 |
54
+ | No log | 0.1224 | 6 | 1.6050 | 0.1761 | 1.6050 | 1.2669 |
55
+ | No log | 0.1633 | 8 | 1.3209 | 0.0742 | 1.3209 | 1.1493 |
56
+ | No log | 0.2041 | 10 | 1.1858 | 0.3974 | 1.1858 | 1.0889 |
57
+ | No log | 0.2449 | 12 | 1.2925 | 0.3196 | 1.2925 | 1.1369 |
58
+ | No log | 0.2857 | 14 | 1.6404 | 0.2668 | 1.6404 | 1.2808 |
59
+ | No log | 0.3265 | 16 | 1.5991 | 0.2668 | 1.5991 | 1.2646 |
60
+ | No log | 0.3673 | 18 | 1.3199 | 0.2937 | 1.3199 | 1.1489 |
61
+ | No log | 0.4082 | 20 | 1.3281 | 0.3636 | 1.3281 | 1.1524 |
62
+ | No log | 0.4490 | 22 | 1.4681 | 0.2793 | 1.4681 | 1.2117 |
63
+ | No log | 0.4898 | 24 | 1.3821 | 0.2793 | 1.3821 | 1.1756 |
64
+ | No log | 0.5306 | 26 | 1.2677 | 0.4154 | 1.2677 | 1.1259 |
65
+ | No log | 0.5714 | 28 | 1.1544 | 0.3771 | 1.1544 | 1.0744 |
66
+ | No log | 0.6122 | 30 | 1.3331 | 0.1470 | 1.3331 | 1.1546 |
67
+ | No log | 0.6531 | 32 | 1.1393 | 0.3340 | 1.1393 | 1.0674 |
68
+ | No log | 0.6939 | 34 | 1.0781 | 0.5706 | 1.0781 | 1.0383 |
69
+ | No log | 0.7347 | 36 | 1.2072 | 0.6769 | 1.2072 | 1.0987 |
70
+ | No log | 0.7755 | 38 | 1.3687 | 0.5464 | 1.3687 | 1.1699 |
71
+ | No log | 0.8163 | 40 | 1.3199 | 0.5022 | 1.3199 | 1.1489 |
72
+ | No log | 0.8571 | 42 | 1.0536 | 0.4627 | 1.0536 | 1.0264 |
73
+ | No log | 0.8980 | 44 | 0.9659 | 0.4650 | 0.9659 | 0.9828 |
74
+ | No log | 0.9388 | 46 | 0.8693 | 0.5305 | 0.8693 | 0.9324 |
75
+ | No log | 0.9796 | 48 | 0.8420 | 0.4898 | 0.8420 | 0.9176 |
76
+ | No log | 1.0204 | 50 | 0.7725 | 0.6461 | 0.7725 | 0.8789 |
77
+ | No log | 1.0612 | 52 | 0.8608 | 0.6706 | 0.8608 | 0.9278 |
78
+ | No log | 1.1020 | 54 | 0.9833 | 0.7239 | 0.9833 | 0.9916 |
79
+ | No log | 1.1429 | 56 | 0.9801 | 0.7793 | 0.9801 | 0.9900 |
80
+ | No log | 1.1837 | 58 | 0.9036 | 0.7031 | 0.9036 | 0.9506 |
81
+ | No log | 1.2245 | 60 | 1.0702 | 0.6757 | 1.0702 | 1.0345 |
82
+ | No log | 1.2653 | 62 | 0.9406 | 0.7945 | 0.9406 | 0.9698 |
83
+ | No log | 1.3061 | 64 | 0.7740 | 0.7437 | 0.7740 | 0.8797 |
84
+ | No log | 1.3469 | 66 | 0.6667 | 0.6774 | 0.6667 | 0.8165 |
85
+ | No log | 1.3878 | 68 | 0.6999 | 0.7367 | 0.6999 | 0.8366 |
86
+ | No log | 1.4286 | 70 | 0.7029 | 0.7367 | 0.7029 | 0.8384 |
87
+ | No log | 1.4694 | 72 | 0.6395 | 0.6724 | 0.6395 | 0.7997 |
88
+ | No log | 1.5102 | 74 | 0.6346 | 0.6724 | 0.6346 | 0.7966 |
89
+ | No log | 1.5510 | 76 | 0.7813 | 0.7439 | 0.7813 | 0.8839 |
90
+ | No log | 1.5918 | 78 | 1.0305 | 0.7429 | 1.0305 | 1.0151 |
91
+ | No log | 1.6327 | 80 | 1.1366 | 0.6866 | 1.1366 | 1.0661 |
92
+ | No log | 1.6735 | 82 | 0.9354 | 0.7239 | 0.9354 | 0.9671 |
93
+ | No log | 1.7143 | 84 | 0.8243 | 0.6830 | 0.8243 | 0.9079 |
94
+ | No log | 1.7551 | 86 | 0.7621 | 0.6909 | 0.7621 | 0.8730 |
95
+ | No log | 1.7959 | 88 | 0.6988 | 0.7801 | 0.6988 | 0.8359 |
96
+ | No log | 1.8367 | 90 | 0.7048 | 0.7801 | 0.7048 | 0.8395 |
97
+ | No log | 1.8776 | 92 | 0.7672 | 0.7212 | 0.7672 | 0.8759 |
98
+ | No log | 1.9184 | 94 | 0.9315 | 0.7144 | 0.9315 | 0.9651 |
99
+ | No log | 1.9592 | 96 | 0.9274 | 0.6887 | 0.9274 | 0.9630 |
100
+ | No log | 2.0 | 98 | 0.8473 | 0.7193 | 0.8473 | 0.9205 |
101
+ | No log | 2.0408 | 100 | 0.7405 | 0.7602 | 0.7405 | 0.8605 |
102
+ | No log | 2.0816 | 102 | 0.7057 | 0.7602 | 0.7057 | 0.8400 |
103
+ | No log | 2.1224 | 104 | 0.7687 | 0.7148 | 0.7687 | 0.8768 |
104
+ | No log | 2.1633 | 106 | 0.9343 | 0.7187 | 0.9343 | 0.9666 |
105
+ | No log | 2.2041 | 108 | 0.9978 | 0.7681 | 0.9978 | 0.9989 |
106
+ | No log | 2.2449 | 110 | 0.8627 | 0.8229 | 0.8627 | 0.9288 |
107
+ | No log | 2.2857 | 112 | 0.6425 | 0.7529 | 0.6425 | 0.8016 |
108
+ | No log | 2.3265 | 114 | 0.5727 | 0.6461 | 0.5727 | 0.7568 |
109
+ | No log | 2.3673 | 116 | 0.5677 | 0.6461 | 0.5677 | 0.7535 |
110
+ | No log | 2.4082 | 118 | 0.6264 | 0.7529 | 0.6264 | 0.7915 |
111
+ | No log | 2.4490 | 120 | 0.9144 | 0.7945 | 0.9144 | 0.9562 |
112
+ | No log | 2.4898 | 122 | 1.2984 | 0.6621 | 1.2984 | 1.1395 |
113
+ | No log | 2.5306 | 124 | 1.1948 | 0.6621 | 1.1948 | 1.0931 |
114
+ | No log | 2.5714 | 126 | 0.8641 | 0.7612 | 0.8641 | 0.9296 |
115
+ | No log | 2.6122 | 128 | 0.6303 | 0.7614 | 0.6303 | 0.7939 |
116
+ | No log | 2.6531 | 130 | 0.6171 | 0.7614 | 0.6171 | 0.7855 |
117
+ | No log | 2.6939 | 132 | 0.6906 | 0.7801 | 0.6906 | 0.8310 |
118
+ | No log | 2.7347 | 134 | 0.8665 | 0.7875 | 0.8665 | 0.9308 |
119
+ | No log | 2.7755 | 136 | 0.8984 | 0.7264 | 0.8984 | 0.9479 |
120
+ | No log | 2.8163 | 138 | 0.7178 | 0.7708 | 0.7178 | 0.8472 |
121
+ | No log | 2.8571 | 140 | 0.6295 | 0.6834 | 0.6295 | 0.7934 |
122
+ | No log | 2.8980 | 142 | 0.6608 | 0.6316 | 0.6608 | 0.8129 |
123
+ | No log | 2.9388 | 144 | 0.6923 | 0.6396 | 0.6923 | 0.8321 |
124
+ | No log | 2.9796 | 146 | 0.7139 | 0.6075 | 0.7139 | 0.8449 |
125
+ | No log | 3.0204 | 148 | 0.6174 | 0.6316 | 0.6174 | 0.7858 |
126
+ | No log | 3.0612 | 150 | 0.7764 | 0.8465 | 0.7764 | 0.8811 |
127
+ | No log | 3.1020 | 152 | 1.1692 | 0.6351 | 1.1692 | 1.0813 |
128
+ | No log | 3.1429 | 154 | 1.1962 | 0.6051 | 1.1962 | 1.0937 |
129
+ | No log | 3.1837 | 156 | 1.0779 | 0.7431 | 1.0779 | 1.0382 |
130
+ | No log | 3.2245 | 158 | 0.8690 | 0.7875 | 0.8690 | 0.9322 |
131
+ | No log | 3.2653 | 160 | 0.6561 | 0.7258 | 0.6561 | 0.8100 |
132
+ | No log | 3.3061 | 162 | 0.5935 | 0.7186 | 0.5935 | 0.7704 |
133
+ | No log | 3.3469 | 164 | 0.5790 | 0.7449 | 0.5790 | 0.7609 |
134
+ | No log | 3.3878 | 166 | 0.6582 | 0.7955 | 0.6582 | 0.8113 |
135
+ | No log | 3.4286 | 168 | 0.9280 | 0.7681 | 0.9280 | 0.9633 |
136
+ | No log | 3.4694 | 170 | 1.1306 | 0.7354 | 1.1306 | 1.0633 |
137
+ | No log | 3.5102 | 172 | 1.0807 | 0.7354 | 1.0807 | 1.0395 |
138
+ | No log | 3.5510 | 174 | 0.8626 | 0.7779 | 0.8626 | 0.9288 |
139
+ | No log | 3.5918 | 176 | 0.6296 | 0.7769 | 0.6296 | 0.7935 |
140
+ | No log | 3.6327 | 178 | 0.5742 | 0.7841 | 0.5742 | 0.7578 |
141
+ | No log | 3.6735 | 180 | 0.5758 | 0.7769 | 0.5758 | 0.7588 |
142
+ | No log | 3.7143 | 182 | 0.6392 | 0.7955 | 0.6392 | 0.7995 |
143
+ | No log | 3.7551 | 184 | 0.8501 | 0.8019 | 0.8501 | 0.9220 |
144
+ | No log | 3.7959 | 186 | 1.0610 | 0.7354 | 1.0610 | 1.0300 |
145
+ | No log | 3.8367 | 188 | 1.0504 | 0.7354 | 1.0504 | 1.0249 |
146
+ | No log | 3.8776 | 190 | 0.8675 | 0.7948 | 0.8675 | 0.9314 |
147
+ | No log | 3.9184 | 192 | 0.7579 | 0.7526 | 0.7579 | 0.8706 |
148
+ | No log | 3.9592 | 194 | 0.7299 | 0.7526 | 0.7299 | 0.8543 |
149
+ | No log | 4.0 | 196 | 0.6885 | 0.7955 | 0.6885 | 0.8297 |
150
+ | No log | 4.0408 | 198 | 0.6697 | 0.7526 | 0.6697 | 0.8184 |
151
+ | No log | 4.0816 | 200 | 0.7111 | 0.7526 | 0.7111 | 0.8433 |
152
+ | No log | 4.1224 | 202 | 0.7202 | 0.7526 | 0.7202 | 0.8486 |
153
+ | No log | 4.1633 | 204 | 0.7634 | 0.7921 | 0.7634 | 0.8737 |
154
+ | No log | 4.2041 | 206 | 0.7380 | 0.8019 | 0.7380 | 0.8590 |
155
+ | No log | 4.2449 | 208 | 0.6763 | 0.7955 | 0.6763 | 0.8224 |
156
+ | No log | 4.2857 | 210 | 0.5510 | 0.7773 | 0.5510 | 0.7423 |
157
+ | No log | 4.3265 | 212 | 0.5256 | 0.7689 | 0.5256 | 0.7250 |
158
+ | No log | 4.3673 | 214 | 0.5191 | 0.7773 | 0.5191 | 0.7205 |
159
+ | No log | 4.4082 | 216 | 0.5846 | 0.7786 | 0.5846 | 0.7646 |
160
+ | No log | 4.4490 | 218 | 0.7970 | 0.7521 | 0.7970 | 0.8928 |
161
+ | No log | 4.4898 | 220 | 0.9025 | 0.7793 | 0.9025 | 0.9500 |
162
+ | No log | 4.5306 | 222 | 0.8087 | 0.7612 | 0.8087 | 0.8993 |
163
+ | No log | 4.5714 | 224 | 0.6990 | 0.8232 | 0.6990 | 0.8361 |
164
+ | No log | 4.6122 | 226 | 0.6399 | 0.8123 | 0.6399 | 0.8000 |
165
+ | No log | 4.6531 | 228 | 0.6098 | 0.7859 | 0.6098 | 0.7809 |
166
+ | No log | 4.6939 | 230 | 0.6756 | 0.8232 | 0.6756 | 0.8220 |
167
+ | No log | 4.7347 | 232 | 0.7156 | 0.8349 | 0.7156 | 0.8460 |
168
+ | No log | 4.7755 | 234 | 0.8363 | 0.7612 | 0.8363 | 0.9145 |
169
+ | No log | 4.8163 | 236 | 0.9588 | 0.7752 | 0.9588 | 0.9792 |
170
+ | No log | 4.8571 | 238 | 0.9015 | 0.7982 | 0.9015 | 0.9495 |
171
+ | No log | 4.8980 | 240 | 0.7200 | 0.7832 | 0.7200 | 0.8485 |
172
+ | No log | 4.9388 | 242 | 0.6329 | 0.8144 | 0.6329 | 0.7955 |
173
+ | No log | 4.9796 | 244 | 0.6539 | 0.8144 | 0.6539 | 0.8086 |
174
+ | No log | 5.0204 | 246 | 0.6983 | 0.7832 | 0.6983 | 0.8356 |
175
+ | No log | 5.0612 | 248 | 0.6967 | 0.8243 | 0.6967 | 0.8347 |
176
+ | No log | 5.1020 | 250 | 0.6793 | 0.8243 | 0.6793 | 0.8242 |
177
+ | No log | 5.1429 | 252 | 0.7113 | 0.7526 | 0.7113 | 0.8434 |
178
+ | No log | 5.1837 | 254 | 0.8310 | 0.7685 | 0.8310 | 0.9116 |
179
+ | No log | 5.2245 | 256 | 0.9715 | 0.7014 | 0.9715 | 0.9857 |
180
+ | No log | 5.2653 | 258 | 0.9511 | 0.7681 | 0.9511 | 0.9752 |
181
+ | No log | 5.3061 | 260 | 0.8594 | 0.7685 | 0.8594 | 0.9270 |
182
+ | No log | 5.3469 | 262 | 0.7517 | 0.7196 | 0.7517 | 0.8670 |
183
+ | No log | 5.3878 | 264 | 0.6897 | 0.7447 | 0.6897 | 0.8305 |
184
+ | No log | 5.4286 | 266 | 0.7045 | 0.7447 | 0.7045 | 0.8393 |
185
+ | No log | 5.4694 | 268 | 0.7824 | 0.7924 | 0.7824 | 0.8846 |
186
+ | No log | 5.5102 | 270 | 0.9504 | 0.7429 | 0.9504 | 0.9749 |
187
+ | No log | 5.5510 | 272 | 1.0540 | 0.7014 | 1.0540 | 1.0266 |
188
+ | No log | 5.5918 | 274 | 1.0036 | 0.7014 | 1.0036 | 1.0018 |
189
+ | No log | 5.6327 | 276 | 0.8519 | 0.7775 | 0.8519 | 0.9230 |
190
+ | No log | 5.6735 | 278 | 0.7349 | 0.7779 | 0.7349 | 0.8573 |
191
+ | No log | 5.7143 | 280 | 0.6053 | 0.7955 | 0.6053 | 0.7780 |
192
+ | No log | 5.7551 | 282 | 0.5676 | 0.7859 | 0.5676 | 0.7534 |
193
+ | No log | 5.7959 | 284 | 0.6013 | 0.7955 | 0.6013 | 0.7754 |
194
+ | No log | 5.8367 | 286 | 0.6872 | 0.7779 | 0.6872 | 0.8290 |
195
+ | No log | 5.8776 | 288 | 0.7929 | 0.8180 | 0.7929 | 0.8904 |
196
+ | No log | 5.9184 | 290 | 0.8004 | 0.8076 | 0.8004 | 0.8946 |
197
+ | No log | 5.9592 | 292 | 0.7185 | 0.8079 | 0.7185 | 0.8476 |
198
+ | No log | 6.0 | 294 | 0.6123 | 0.8607 | 0.6123 | 0.7825 |
199
+ | No log | 6.0408 | 296 | 0.5838 | 0.8144 | 0.5838 | 0.7641 |
200
+ | No log | 6.0816 | 298 | 0.6197 | 0.8721 | 0.6197 | 0.7872 |
201
+ | No log | 6.1224 | 300 | 0.7583 | 0.8195 | 0.7583 | 0.8708 |
202
+ | No log | 6.1633 | 302 | 0.8820 | 0.7979 | 0.8820 | 0.9391 |
203
+ | No log | 6.2041 | 304 | 0.9183 | 0.7979 | 0.9183 | 0.9583 |
204
+ | No log | 6.2449 | 306 | 0.8715 | 0.7681 | 0.8715 | 0.9335 |
205
+ | No log | 6.2857 | 308 | 0.7762 | 0.7924 | 0.7762 | 0.8810 |
206
+ | No log | 6.3265 | 310 | 0.6782 | 0.8352 | 0.6782 | 0.8235 |
207
+ | No log | 6.3673 | 312 | 0.6308 | 0.8352 | 0.6308 | 0.7942 |
208
+ | No log | 6.4082 | 314 | 0.6026 | 0.8352 | 0.6026 | 0.7762 |
209
+ | No log | 6.4490 | 316 | 0.6349 | 0.8607 | 0.6349 | 0.7968 |
210
+ | No log | 6.4898 | 318 | 0.7361 | 0.8180 | 0.7361 | 0.8580 |
211
+ | No log | 6.5306 | 320 | 0.8751 | 0.7979 | 0.8751 | 0.9355 |
212
+ | No log | 6.5714 | 322 | 0.9450 | 0.7911 | 0.9450 | 0.9721 |
213
+ | No log | 6.6122 | 324 | 0.8764 | 0.8235 | 0.8764 | 0.9362 |
214
+ | No log | 6.6531 | 326 | 0.8078 | 0.8349 | 0.8078 | 0.8988 |
215
+ | No log | 6.6939 | 328 | 0.7534 | 0.8349 | 0.7534 | 0.8680 |
216
+ | No log | 6.7347 | 330 | 0.7588 | 0.8349 | 0.7588 | 0.8711 |
217
+ | No log | 6.7755 | 332 | 0.7371 | 0.8349 | 0.7371 | 0.8585 |
218
+ | No log | 6.8163 | 334 | 0.6876 | 0.8349 | 0.6876 | 0.8292 |
219
+ | No log | 6.8571 | 336 | 0.6411 | 0.8349 | 0.6411 | 0.8007 |
220
+ | No log | 6.8980 | 338 | 0.6474 | 0.8349 | 0.6474 | 0.8046 |
221
+ | No log | 6.9388 | 340 | 0.6162 | 0.8465 | 0.6162 | 0.7850 |
222
+ | No log | 6.9796 | 342 | 0.5961 | 0.8565 | 0.5961 | 0.7721 |
223
+ | No log | 7.0204 | 344 | 0.6003 | 0.8565 | 0.6003 | 0.7748 |
224
+ | No log | 7.0612 | 346 | 0.6564 | 0.8681 | 0.6564 | 0.8102 |
225
+ | No log | 7.1020 | 348 | 0.7397 | 0.8399 | 0.7397 | 0.8601 |
226
+ | No log | 7.1429 | 350 | 0.7687 | 0.7982 | 0.7687 | 0.8767 |
227
+ | No log | 7.1837 | 352 | 0.7431 | 0.8079 | 0.7431 | 0.8620 |
228
+ | No log | 7.2245 | 354 | 0.7140 | 0.8465 | 0.7140 | 0.8450 |
229
+ | No log | 7.2653 | 356 | 0.7440 | 0.8349 | 0.7440 | 0.8626 |
230
+ | No log | 7.3061 | 358 | 0.7750 | 0.7775 | 0.7750 | 0.8803 |
231
+ | No log | 7.3469 | 360 | 0.7720 | 0.8229 | 0.7720 | 0.8786 |
232
+ | No log | 7.3878 | 362 | 0.7863 | 0.8229 | 0.7863 | 0.8867 |
233
+ | No log | 7.4286 | 364 | 0.7795 | 0.8229 | 0.7795 | 0.8829 |
234
+ | No log | 7.4694 | 366 | 0.7302 | 0.8229 | 0.7302 | 0.8545 |
235
+ | No log | 7.5102 | 368 | 0.7125 | 0.8586 | 0.7125 | 0.8441 |
236
+ | No log | 7.5510 | 370 | 0.6847 | 0.8586 | 0.6847 | 0.8275 |
237
+ | No log | 7.5918 | 372 | 0.6773 | 0.8465 | 0.6773 | 0.8230 |
238
+ | No log | 7.6327 | 374 | 0.6575 | 0.8352 | 0.6575 | 0.8109 |
239
+ | No log | 7.6735 | 376 | 0.6645 | 0.8352 | 0.6645 | 0.8151 |
240
+ | No log | 7.7143 | 378 | 0.7011 | 0.8465 | 0.7011 | 0.8373 |
241
+ | No log | 7.7551 | 380 | 0.7190 | 0.8465 | 0.7190 | 0.8480 |
242
+ | No log | 7.7959 | 382 | 0.7148 | 0.8465 | 0.7148 | 0.8454 |
243
+ | No log | 7.8367 | 384 | 0.7001 | 0.8465 | 0.7001 | 0.8367 |
244
+ | No log | 7.8776 | 386 | 0.6857 | 0.8352 | 0.6857 | 0.8280 |
245
+ | No log | 7.9184 | 388 | 0.7148 | 0.8465 | 0.7148 | 0.8454 |
246
+ | No log | 7.9592 | 390 | 0.7728 | 0.8295 | 0.7728 | 0.8791 |
247
+ | No log | 8.0 | 392 | 0.8187 | 0.8076 | 0.8187 | 0.9048 |
248
+ | No log | 8.0408 | 394 | 0.8145 | 0.8076 | 0.8145 | 0.9025 |
249
+ | No log | 8.0816 | 396 | 0.8144 | 0.8016 | 0.8144 | 0.9024 |
250
+ | No log | 8.1224 | 398 | 0.7854 | 0.8586 | 0.7854 | 0.8862 |
251
+ | No log | 8.1633 | 400 | 0.7455 | 0.8465 | 0.7455 | 0.8634 |
252
+ | No log | 8.2041 | 402 | 0.7300 | 0.8465 | 0.7300 | 0.8544 |
253
+ | No log | 8.2449 | 404 | 0.7076 | 0.8465 | 0.7076 | 0.8412 |
254
+ | No log | 8.2857 | 406 | 0.7070 | 0.8465 | 0.7070 | 0.8408 |
255
+ | No log | 8.3265 | 408 | 0.7052 | 0.8465 | 0.7052 | 0.8398 |
256
+ | No log | 8.3673 | 410 | 0.7147 | 0.8465 | 0.7147 | 0.8454 |
257
+ | No log | 8.4082 | 412 | 0.7596 | 0.8295 | 0.7596 | 0.8716 |
258
+ | No log | 8.4490 | 414 | 0.8369 | 0.8195 | 0.8369 | 0.9148 |
259
+ | No log | 8.4898 | 416 | 0.8907 | 0.8192 | 0.8907 | 0.9438 |
260
+ | No log | 8.5306 | 418 | 0.9329 | 0.7805 | 0.9329 | 0.9658 |
261
+ | No log | 8.5714 | 420 | 0.9738 | 0.7805 | 0.9738 | 0.9868 |
262
+ | No log | 8.6122 | 422 | 0.9899 | 0.7805 | 0.9899 | 0.9949 |
263
+ | No log | 8.6531 | 424 | 0.9638 | 0.7805 | 0.9638 | 0.9817 |
264
+ | No log | 8.6939 | 426 | 0.9011 | 0.8100 | 0.9011 | 0.9493 |
265
+ | No log | 8.7347 | 428 | 0.8287 | 0.8195 | 0.8287 | 0.9103 |
266
+ | No log | 8.7755 | 430 | 0.7889 | 0.8295 | 0.7889 | 0.8882 |
267
+ | No log | 8.8163 | 432 | 0.7691 | 0.8019 | 0.7691 | 0.8770 |
268
+ | No log | 8.8571 | 434 | 0.7512 | 0.8019 | 0.7512 | 0.8667 |
269
+ | No log | 8.8980 | 436 | 0.7342 | 0.8019 | 0.7342 | 0.8569 |
270
+ | No log | 8.9388 | 438 | 0.7156 | 0.8019 | 0.7156 | 0.8459 |
271
+ | No log | 8.9796 | 440 | 0.7045 | 0.8019 | 0.7045 | 0.8393 |
272
+ | No log | 9.0204 | 442 | 0.6893 | 0.8019 | 0.6893 | 0.8302 |
273
+ | No log | 9.0612 | 444 | 0.6862 | 0.8019 | 0.6862 | 0.8283 |
274
+ | No log | 9.1020 | 446 | 0.6846 | 0.8019 | 0.6846 | 0.8274 |
275
+ | No log | 9.1429 | 448 | 0.6871 | 0.8019 | 0.6871 | 0.8289 |
276
+ | No log | 9.1837 | 450 | 0.6942 | 0.8019 | 0.6942 | 0.8332 |
277
+ | No log | 9.2245 | 452 | 0.7008 | 0.8019 | 0.7008 | 0.8371 |
278
+ | No log | 9.2653 | 454 | 0.7193 | 0.8019 | 0.7193 | 0.8481 |
279
+ | No log | 9.3061 | 456 | 0.7484 | 0.8019 | 0.7484 | 0.8651 |
280
+ | No log | 9.3469 | 458 | 0.7729 | 0.8399 | 0.7729 | 0.8792 |
281
+ | No log | 9.3878 | 460 | 0.7970 | 0.8399 | 0.7970 | 0.8928 |
282
+ | No log | 9.4286 | 462 | 0.8194 | 0.8399 | 0.8194 | 0.9052 |
283
+ | No log | 9.4694 | 464 | 0.8239 | 0.8399 | 0.8239 | 0.9077 |
284
+ | No log | 9.5102 | 466 | 0.8296 | 0.8399 | 0.8296 | 0.9108 |
285
+ | No log | 9.5510 | 468 | 0.8345 | 0.8399 | 0.8345 | 0.9135 |
286
+ | No log | 9.5918 | 470 | 0.8270 | 0.8399 | 0.8270 | 0.9094 |
287
+ | No log | 9.6327 | 472 | 0.8107 | 0.8399 | 0.8107 | 0.9004 |
288
+ | No log | 9.6735 | 474 | 0.7943 | 0.8399 | 0.7943 | 0.8912 |
289
+ | No log | 9.7143 | 476 | 0.7816 | 0.8399 | 0.7816 | 0.8841 |
290
+ | No log | 9.7551 | 478 | 0.7706 | 0.8399 | 0.7706 | 0.8778 |
291
+ | No log | 9.7959 | 480 | 0.7630 | 0.8399 | 0.7630 | 0.8735 |
292
+ | No log | 9.8367 | 482 | 0.7605 | 0.8399 | 0.7605 | 0.8721 |
293
+ | No log | 9.8776 | 484 | 0.7601 | 0.8399 | 0.7601 | 0.8719 |
294
+ | No log | 9.9184 | 486 | 0.7600 | 0.8399 | 0.7600 | 0.8718 |
295
+ | No log | 9.9592 | 488 | 0.7593 | 0.8399 | 0.7593 | 0.8714 |
296
+ | No log | 10.0 | 490 | 0.7593 | 0.8399 | 0.7593 | 0.8714 |
297
+
298
+
299
+ ### Framework versions
300
+
301
+ - Transformers 4.44.2
302
+ - Pytorch 2.4.0+cu118
303
+ - Datasets 2.21.0
304
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eff9d631371e268970d75a5585c95201fb77e17299fa3ed207888e02de18bcd7
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed53a539cee73a78147bc2d16bd908773fd78231028c91a5377eeeb9fbc00b72
3
+ size 5240