MayBashendy commited on
Commit
dc152e1
·
verified ·
1 Parent(s): e961660

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k10_task3_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k10_task3_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8461
19
+ - Qwk: 0.1362
20
+ - Mse: 0.8461
21
+ - Rmse: 0.9198
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0714 | 2 | 3.7931 | -0.0163 | 3.7931 | 1.9476 |
53
+ | No log | 0.1429 | 4 | 1.7473 | 0.0943 | 1.7473 | 1.3218 |
54
+ | No log | 0.2143 | 6 | 1.2333 | 0.1067 | 1.2333 | 1.1105 |
55
+ | No log | 0.2857 | 8 | 1.2190 | 0.0586 | 1.2190 | 1.1041 |
56
+ | No log | 0.3571 | 10 | 1.1768 | 0.0586 | 1.1768 | 1.0848 |
57
+ | No log | 0.4286 | 12 | 1.1086 | -0.0164 | 1.1086 | 1.0529 |
58
+ | No log | 0.5 | 14 | 1.0054 | -0.0398 | 1.0054 | 1.0027 |
59
+ | No log | 0.5714 | 16 | 0.9601 | -0.0638 | 0.9601 | 0.9799 |
60
+ | No log | 0.6429 | 18 | 1.0323 | -0.1290 | 1.0323 | 1.0160 |
61
+ | No log | 0.7143 | 20 | 1.0820 | -0.1575 | 1.0820 | 1.0402 |
62
+ | No log | 0.7857 | 22 | 1.0320 | -0.1278 | 1.0320 | 1.0159 |
63
+ | No log | 0.8571 | 24 | 1.0577 | -0.1920 | 1.0577 | 1.0285 |
64
+ | No log | 0.9286 | 26 | 1.0587 | -0.1602 | 1.0587 | 1.0289 |
65
+ | No log | 1.0 | 28 | 1.1240 | -0.0977 | 1.1240 | 1.0602 |
66
+ | No log | 1.0714 | 30 | 1.2121 | -0.0987 | 1.2121 | 1.1010 |
67
+ | No log | 1.1429 | 32 | 1.2955 | -0.0704 | 1.2955 | 1.1382 |
68
+ | No log | 1.2143 | 34 | 1.1399 | -0.0982 | 1.1399 | 1.0677 |
69
+ | No log | 1.2857 | 36 | 1.2880 | -0.0423 | 1.2880 | 1.1349 |
70
+ | No log | 1.3571 | 38 | 1.6238 | 0.0 | 1.6238 | 1.2743 |
71
+ | No log | 1.4286 | 40 | 1.4649 | 0.0 | 1.4649 | 1.2103 |
72
+ | No log | 1.5 | 42 | 1.3170 | 0.0 | 1.3170 | 1.1476 |
73
+ | No log | 1.5714 | 44 | 1.0074 | -0.0728 | 1.0074 | 1.0037 |
74
+ | No log | 1.6429 | 46 | 0.7913 | -0.0725 | 0.7913 | 0.8895 |
75
+ | No log | 1.7143 | 48 | 0.7299 | -0.0069 | 0.7299 | 0.8543 |
76
+ | No log | 1.7857 | 50 | 0.7275 | -0.0035 | 0.7275 | 0.8530 |
77
+ | No log | 1.8571 | 52 | 0.8108 | 0.1148 | 0.8108 | 0.9005 |
78
+ | No log | 1.9286 | 54 | 1.0706 | -0.0207 | 1.0706 | 1.0347 |
79
+ | No log | 2.0 | 56 | 1.5628 | 0.0 | 1.5628 | 1.2501 |
80
+ | No log | 2.0714 | 58 | 1.7116 | -0.0015 | 1.7116 | 1.3083 |
81
+ | No log | 2.1429 | 60 | 1.4090 | -0.0207 | 1.4090 | 1.1870 |
82
+ | No log | 2.2143 | 62 | 0.9666 | -0.1274 | 0.9666 | 0.9832 |
83
+ | No log | 2.2857 | 64 | 0.7896 | -0.0725 | 0.7896 | 0.8886 |
84
+ | No log | 2.3571 | 66 | 0.7379 | -0.0188 | 0.7379 | 0.8590 |
85
+ | No log | 2.4286 | 68 | 0.7253 | 0.0479 | 0.7253 | 0.8517 |
86
+ | No log | 2.5 | 70 | 0.7317 | -0.0188 | 0.7317 | 0.8554 |
87
+ | No log | 2.5714 | 72 | 0.7414 | -0.0188 | 0.7414 | 0.8611 |
88
+ | No log | 2.6429 | 74 | 0.7692 | -0.0264 | 0.7692 | 0.8770 |
89
+ | No log | 2.7143 | 76 | 0.8360 | -0.1676 | 0.8360 | 0.9143 |
90
+ | No log | 2.7857 | 78 | 1.2867 | 0.0379 | 1.2867 | 1.1343 |
91
+ | No log | 2.8571 | 80 | 1.5995 | 0.0 | 1.5995 | 1.2647 |
92
+ | No log | 2.9286 | 82 | 1.5630 | 0.0 | 1.5630 | 1.2502 |
93
+ | No log | 3.0 | 84 | 1.4121 | 0.0016 | 1.4121 | 1.1883 |
94
+ | No log | 3.0714 | 86 | 0.9479 | 0.0378 | 0.9479 | 0.9736 |
95
+ | No log | 3.1429 | 88 | 0.8090 | -0.0215 | 0.8090 | 0.8994 |
96
+ | No log | 3.2143 | 90 | 1.2409 | -0.0229 | 1.2409 | 1.1140 |
97
+ | No log | 3.2857 | 92 | 0.9916 | -0.0490 | 0.9916 | 0.9958 |
98
+ | No log | 3.3571 | 94 | 0.7256 | 0.0416 | 0.7256 | 0.8518 |
99
+ | No log | 3.4286 | 96 | 0.9127 | 0.0848 | 0.9127 | 0.9554 |
100
+ | No log | 3.5 | 98 | 1.2301 | 0.0279 | 1.2301 | 1.1091 |
101
+ | No log | 3.5714 | 100 | 1.2975 | -0.0247 | 1.2975 | 1.1391 |
102
+ | No log | 3.6429 | 102 | 0.9897 | -0.0638 | 0.9897 | 0.9948 |
103
+ | No log | 3.7143 | 104 | 0.7811 | 0.0296 | 0.7811 | 0.8838 |
104
+ | No log | 3.7857 | 106 | 0.7629 | 0.1498 | 0.7629 | 0.8734 |
105
+ | No log | 3.8571 | 108 | 0.7401 | 0.0334 | 0.7401 | 0.8603 |
106
+ | No log | 3.9286 | 110 | 0.7284 | 0.0334 | 0.7284 | 0.8535 |
107
+ | No log | 4.0 | 112 | 0.7358 | 0.0807 | 0.7358 | 0.8578 |
108
+ | No log | 4.0714 | 114 | 0.7242 | 0.0374 | 0.7242 | 0.8510 |
109
+ | No log | 4.1429 | 116 | 0.7582 | 0.0973 | 0.7582 | 0.8707 |
110
+ | No log | 4.2143 | 118 | 0.7734 | 0.0759 | 0.7734 | 0.8794 |
111
+ | No log | 4.2857 | 120 | 0.7728 | 0.0714 | 0.7728 | 0.8791 |
112
+ | No log | 4.3571 | 122 | 0.7595 | 0.1292 | 0.7595 | 0.8715 |
113
+ | No log | 4.4286 | 124 | 0.7760 | 0.1463 | 0.7760 | 0.8809 |
114
+ | No log | 4.5 | 126 | 0.7632 | 0.1249 | 0.7632 | 0.8736 |
115
+ | No log | 4.5714 | 128 | 1.1024 | 0.0147 | 1.1024 | 1.0499 |
116
+ | No log | 4.6429 | 130 | 1.3365 | 0.1042 | 1.3365 | 1.1561 |
117
+ | No log | 4.7143 | 132 | 0.8847 | -0.0240 | 0.8847 | 0.9406 |
118
+ | No log | 4.7857 | 134 | 0.9086 | 0.1277 | 0.9086 | 0.9532 |
119
+ | No log | 4.8571 | 136 | 1.0115 | -0.0197 | 1.0115 | 1.0057 |
120
+ | No log | 4.9286 | 138 | 1.1096 | 0.0691 | 1.1096 | 1.0534 |
121
+ | No log | 5.0 | 140 | 1.0296 | 0.0871 | 1.0296 | 1.0147 |
122
+ | No log | 5.0714 | 142 | 1.0426 | 0.0955 | 1.0426 | 1.0211 |
123
+ | No log | 5.1429 | 144 | 0.9628 | 0.0735 | 0.9628 | 0.9812 |
124
+ | No log | 5.2143 | 146 | 1.2589 | 0.1057 | 1.2589 | 1.1220 |
125
+ | No log | 5.2857 | 148 | 1.2144 | 0.0666 | 1.2144 | 1.1020 |
126
+ | No log | 5.3571 | 150 | 0.9212 | 0.1014 | 0.9212 | 0.9598 |
127
+ | No log | 5.4286 | 152 | 0.9146 | 0.1309 | 0.9146 | 0.9563 |
128
+ | No log | 5.5 | 154 | 0.8539 | 0.1660 | 0.8539 | 0.9241 |
129
+ | No log | 5.5714 | 156 | 0.9793 | -0.0486 | 0.9793 | 0.9896 |
130
+ | No log | 5.6429 | 158 | 1.6529 | 0.0877 | 1.6529 | 1.2856 |
131
+ | No log | 5.7143 | 160 | 2.0591 | 0.0074 | 2.0591 | 1.4350 |
132
+ | No log | 5.7857 | 162 | 1.8463 | 0.0610 | 1.8463 | 1.3588 |
133
+ | No log | 5.8571 | 164 | 1.2087 | -0.0316 | 1.2087 | 1.0994 |
134
+ | No log | 5.9286 | 166 | 0.7202 | 0.1691 | 0.7202 | 0.8486 |
135
+ | No log | 6.0 | 168 | 0.6593 | 0.0857 | 0.6593 | 0.8120 |
136
+ | No log | 6.0714 | 170 | 0.6613 | 0.0909 | 0.6613 | 0.8132 |
137
+ | No log | 6.1429 | 172 | 0.6729 | 0.1318 | 0.6729 | 0.8203 |
138
+ | No log | 6.2143 | 174 | 0.8472 | 0.0748 | 0.8472 | 0.9205 |
139
+ | No log | 6.2857 | 176 | 0.8771 | 0.0596 | 0.8771 | 0.9365 |
140
+ | No log | 6.3571 | 178 | 0.7481 | 0.1553 | 0.7481 | 0.8649 |
141
+ | No log | 6.4286 | 180 | 0.7192 | 0.2194 | 0.7192 | 0.8481 |
142
+ | No log | 6.5 | 182 | 0.7241 | 0.1372 | 0.7241 | 0.8509 |
143
+ | No log | 6.5714 | 184 | 0.7153 | 0.1815 | 0.7153 | 0.8457 |
144
+ | No log | 6.6429 | 186 | 0.7578 | 0.2009 | 0.7578 | 0.8705 |
145
+ | No log | 6.7143 | 188 | 0.7496 | 0.2009 | 0.7496 | 0.8658 |
146
+ | No log | 6.7857 | 190 | 0.7724 | 0.1336 | 0.7724 | 0.8789 |
147
+ | No log | 6.8571 | 192 | 0.7451 | 0.0670 | 0.7451 | 0.8632 |
148
+ | No log | 6.9286 | 194 | 0.7786 | 0.0588 | 0.7786 | 0.8824 |
149
+ | No log | 7.0 | 196 | 0.7940 | 0.0071 | 0.7940 | 0.8911 |
150
+ | No log | 7.0714 | 198 | 0.7683 | 0.0454 | 0.7683 | 0.8765 |
151
+ | No log | 7.1429 | 200 | 0.7944 | 0.0518 | 0.7944 | 0.8913 |
152
+ | No log | 7.2143 | 202 | 0.8532 | 0.0476 | 0.8532 | 0.9237 |
153
+ | No log | 7.2857 | 204 | 1.1917 | 0.0578 | 1.1917 | 1.0917 |
154
+ | No log | 7.3571 | 206 | 1.0384 | -0.0571 | 1.0384 | 1.0190 |
155
+ | No log | 7.4286 | 208 | 0.7417 | 0.2053 | 0.7417 | 0.8612 |
156
+ | No log | 7.5 | 210 | 0.8007 | 0.1419 | 0.8007 | 0.8948 |
157
+ | No log | 7.5714 | 212 | 0.8175 | 0.1412 | 0.8175 | 0.9042 |
158
+ | No log | 7.6429 | 214 | 0.7638 | 0.2153 | 0.7638 | 0.8740 |
159
+ | No log | 7.7143 | 216 | 0.8834 | -0.0008 | 0.8834 | 0.9399 |
160
+ | No log | 7.7857 | 218 | 0.8507 | 0.1365 | 0.8507 | 0.9223 |
161
+ | No log | 7.8571 | 220 | 0.8029 | 0.2118 | 0.8029 | 0.8961 |
162
+ | No log | 7.9286 | 222 | 0.8127 | 0.2132 | 0.8127 | 0.9015 |
163
+ | No log | 8.0 | 224 | 0.7567 | 0.0869 | 0.7567 | 0.8699 |
164
+ | No log | 8.0714 | 226 | 0.7917 | 0.0714 | 0.7917 | 0.8898 |
165
+ | No log | 8.1429 | 228 | 0.8053 | 0.1146 | 0.8053 | 0.8974 |
166
+ | No log | 8.2143 | 230 | 0.8519 | 0.1324 | 0.8519 | 0.9230 |
167
+ | No log | 8.2857 | 232 | 0.8206 | 0.1796 | 0.8206 | 0.9059 |
168
+ | No log | 8.3571 | 234 | 0.8791 | 0.2430 | 0.8791 | 0.9376 |
169
+ | No log | 8.4286 | 236 | 0.8956 | 0.0936 | 0.8956 | 0.9464 |
170
+ | No log | 8.5 | 238 | 0.8423 | 0.1367 | 0.8423 | 0.9178 |
171
+ | No log | 8.5714 | 240 | 0.7330 | 0.0436 | 0.7330 | 0.8561 |
172
+ | No log | 8.6429 | 242 | 0.6988 | 0.1379 | 0.6988 | 0.8360 |
173
+ | No log | 8.7143 | 244 | 0.8530 | 0.0525 | 0.8530 | 0.9236 |
174
+ | No log | 8.7857 | 246 | 0.8828 | 0.0068 | 0.8828 | 0.9396 |
175
+ | No log | 8.8571 | 248 | 0.7583 | 0.1379 | 0.7583 | 0.8708 |
176
+ | No log | 8.9286 | 250 | 0.7225 | 0.1379 | 0.7225 | 0.8500 |
177
+ | No log | 9.0 | 252 | 0.7946 | 0.0905 | 0.7946 | 0.8914 |
178
+ | No log | 9.0714 | 254 | 0.8124 | 0.0846 | 0.8124 | 0.9013 |
179
+ | No log | 9.1429 | 256 | 0.8740 | 0.0588 | 0.8740 | 0.9349 |
180
+ | No log | 9.2143 | 258 | 1.1843 | 0.0824 | 1.1843 | 1.0882 |
181
+ | No log | 9.2857 | 260 | 1.1990 | 0.0078 | 1.1990 | 1.0950 |
182
+ | No log | 9.3571 | 262 | 0.9186 | -0.1255 | 0.9186 | 0.9584 |
183
+ | No log | 9.4286 | 264 | 0.7515 | 0.0828 | 0.7515 | 0.8669 |
184
+ | No log | 9.5 | 266 | 0.7597 | 0.1387 | 0.7597 | 0.8716 |
185
+ | No log | 9.5714 | 268 | 0.7482 | 0.0874 | 0.7482 | 0.8650 |
186
+ | No log | 9.6429 | 270 | 0.8206 | 0.1097 | 0.8206 | 0.9059 |
187
+ | No log | 9.7143 | 272 | 1.0498 | 0.0159 | 1.0498 | 1.0246 |
188
+ | No log | 9.7857 | 274 | 1.0279 | 0.0856 | 1.0279 | 1.0139 |
189
+ | No log | 9.8571 | 276 | 0.8519 | 0.0295 | 0.8519 | 0.9230 |
190
+ | No log | 9.9286 | 278 | 0.8671 | 0.1285 | 0.8671 | 0.9312 |
191
+ | No log | 10.0 | 280 | 0.8576 | 0.1711 | 0.8576 | 0.9261 |
192
+ | No log | 10.0714 | 282 | 0.7605 | 0.1347 | 0.7605 | 0.8721 |
193
+ | No log | 10.1429 | 284 | 0.7810 | 0.0318 | 0.7810 | 0.8838 |
194
+ | No log | 10.2143 | 286 | 0.8821 | 0.1105 | 0.8821 | 0.9392 |
195
+ | No log | 10.2857 | 288 | 0.8523 | 0.1379 | 0.8523 | 0.9232 |
196
+ | No log | 10.3571 | 290 | 0.7724 | 0.0863 | 0.7724 | 0.8789 |
197
+ | No log | 10.4286 | 292 | 0.7852 | 0.0776 | 0.7852 | 0.8861 |
198
+ | No log | 10.5 | 294 | 0.8407 | 0.1324 | 0.8407 | 0.9169 |
199
+ | No log | 10.5714 | 296 | 0.8925 | 0.1422 | 0.8925 | 0.9447 |
200
+ | No log | 10.6429 | 298 | 0.8725 | 0.1253 | 0.8725 | 0.9341 |
201
+ | No log | 10.7143 | 300 | 0.8569 | 0.2063 | 0.8569 | 0.9257 |
202
+ | No log | 10.7857 | 302 | 0.8239 | 0.1287 | 0.8239 | 0.9077 |
203
+ | No log | 10.8571 | 304 | 0.8500 | 0.0959 | 0.8500 | 0.9220 |
204
+ | No log | 10.9286 | 306 | 0.9011 | -0.0490 | 0.9011 | 0.9493 |
205
+ | No log | 11.0 | 308 | 0.8347 | 0.1836 | 0.8347 | 0.9136 |
206
+ | No log | 11.0714 | 310 | 0.7880 | 0.1691 | 0.7880 | 0.8877 |
207
+ | No log | 11.1429 | 312 | 0.8176 | 0.2034 | 0.8176 | 0.9042 |
208
+ | No log | 11.2143 | 314 | 0.8947 | -0.0031 | 0.8947 | 0.9459 |
209
+ | No log | 11.2857 | 316 | 0.8196 | 0.1599 | 0.8196 | 0.9053 |
210
+ | No log | 11.3571 | 318 | 0.7977 | 0.1769 | 0.7977 | 0.8931 |
211
+ | No log | 11.4286 | 320 | 0.8297 | 0.1249 | 0.8297 | 0.9109 |
212
+ | No log | 11.5 | 322 | 0.8958 | 0.0407 | 0.8958 | 0.9464 |
213
+ | No log | 11.5714 | 324 | 0.8983 | 0.0016 | 0.8983 | 0.9478 |
214
+ | No log | 11.6429 | 326 | 0.8002 | 0.0869 | 0.8002 | 0.8945 |
215
+ | No log | 11.7143 | 328 | 0.8199 | 0.2142 | 0.8199 | 0.9055 |
216
+ | No log | 11.7857 | 330 | 0.8485 | 0.2073 | 0.8485 | 0.9211 |
217
+ | No log | 11.8571 | 332 | 0.8476 | 0.1761 | 0.8476 | 0.9206 |
218
+ | No log | 11.9286 | 334 | 0.9139 | -0.1088 | 0.9139 | 0.9560 |
219
+ | No log | 12.0 | 336 | 1.0293 | 0.0888 | 1.0293 | 1.0145 |
220
+ | No log | 12.0714 | 338 | 0.9593 | 0.0406 | 0.9593 | 0.9795 |
221
+ | No log | 12.1429 | 340 | 0.8874 | 0.1687 | 0.8874 | 0.9420 |
222
+ | No log | 12.2143 | 342 | 0.8352 | 0.1761 | 0.8352 | 0.9139 |
223
+ | No log | 12.2857 | 344 | 0.7984 | 0.0884 | 0.7984 | 0.8935 |
224
+ | No log | 12.3571 | 346 | 0.8121 | 0.0260 | 0.8121 | 0.9012 |
225
+ | No log | 12.4286 | 348 | 0.8166 | 0.0225 | 0.8166 | 0.9037 |
226
+ | No log | 12.5 | 350 | 0.7923 | 0.0296 | 0.7923 | 0.8901 |
227
+ | No log | 12.5714 | 352 | 0.7943 | 0.1835 | 0.7943 | 0.8912 |
228
+ | No log | 12.6429 | 354 | 0.8138 | 0.1769 | 0.8138 | 0.9021 |
229
+ | No log | 12.7143 | 356 | 0.9420 | -0.0030 | 0.9420 | 0.9706 |
230
+ | No log | 12.7857 | 358 | 0.9872 | -0.0052 | 0.9872 | 0.9936 |
231
+ | No log | 12.8571 | 360 | 0.8874 | 0.0175 | 0.8874 | 0.9420 |
232
+ | No log | 12.9286 | 362 | 0.8120 | 0.0303 | 0.8120 | 0.9011 |
233
+ | No log | 13.0 | 364 | 0.7774 | 0.1304 | 0.7774 | 0.8817 |
234
+ | No log | 13.0714 | 366 | 0.7793 | 0.0260 | 0.7793 | 0.8828 |
235
+ | No log | 13.1429 | 368 | 0.7971 | 0.0296 | 0.7971 | 0.8928 |
236
+ | No log | 13.2143 | 370 | 0.8472 | 0.0303 | 0.8472 | 0.9204 |
237
+ | No log | 13.2857 | 372 | 0.8887 | 0.0303 | 0.8887 | 0.9427 |
238
+ | No log | 13.3571 | 374 | 0.9323 | 0.0205 | 0.9323 | 0.9656 |
239
+ | No log | 13.4286 | 376 | 1.0037 | 0.0084 | 1.0037 | 1.0018 |
240
+ | No log | 13.5 | 378 | 0.9791 | 0.1094 | 0.9791 | 0.9895 |
241
+ | No log | 13.5714 | 380 | 0.9785 | -0.0512 | 0.9785 | 0.9892 |
242
+ | No log | 13.6429 | 382 | 0.9686 | -0.0032 | 0.9686 | 0.9841 |
243
+ | No log | 13.7143 | 384 | 0.8987 | 0.1310 | 0.8987 | 0.9480 |
244
+ | No log | 13.7857 | 386 | 0.9012 | 0.0709 | 0.9012 | 0.9493 |
245
+ | No log | 13.8571 | 388 | 0.9505 | -0.0341 | 0.9505 | 0.9749 |
246
+ | No log | 13.9286 | 390 | 0.9536 | -0.0341 | 0.9536 | 0.9765 |
247
+ | No log | 14.0 | 392 | 0.8708 | 0.0323 | 0.8708 | 0.9332 |
248
+ | No log | 14.0714 | 394 | 0.8793 | -0.0806 | 0.8793 | 0.9377 |
249
+ | No log | 14.1429 | 396 | 0.8696 | -0.0054 | 0.8696 | 0.9325 |
250
+ | No log | 14.2143 | 398 | 0.8646 | -0.0766 | 0.8646 | 0.9298 |
251
+ | No log | 14.2857 | 400 | 0.8804 | -0.0778 | 0.8804 | 0.9383 |
252
+ | No log | 14.3571 | 402 | 0.9399 | -0.0336 | 0.9399 | 0.9695 |
253
+ | No log | 14.4286 | 404 | 0.9066 | -0.0316 | 0.9066 | 0.9522 |
254
+ | No log | 14.5 | 406 | 0.8456 | 0.0357 | 0.8456 | 0.9196 |
255
+ | No log | 14.5714 | 408 | 0.8692 | 0.0834 | 0.8692 | 0.9323 |
256
+ | No log | 14.6429 | 410 | 0.8838 | 0.0236 | 0.8838 | 0.9401 |
257
+ | No log | 14.7143 | 412 | 0.8637 | 0.0791 | 0.8637 | 0.9293 |
258
+ | No log | 14.7857 | 414 | 0.8389 | 0.1815 | 0.8389 | 0.9159 |
259
+ | No log | 14.8571 | 416 | 0.8300 | 0.1815 | 0.8300 | 0.9110 |
260
+ | No log | 14.9286 | 418 | 0.8346 | 0.1856 | 0.8346 | 0.9136 |
261
+ | No log | 15.0 | 420 | 0.8985 | -0.0767 | 0.8985 | 0.9479 |
262
+ | No log | 15.0714 | 422 | 0.8718 | -0.0766 | 0.8718 | 0.9337 |
263
+ | No log | 15.1429 | 424 | 0.8373 | 0.1815 | 0.8373 | 0.9150 |
264
+ | No log | 15.2143 | 426 | 0.8346 | 0.0884 | 0.8346 | 0.9135 |
265
+ | No log | 15.2857 | 428 | 0.8436 | 0.0776 | 0.8436 | 0.9185 |
266
+ | No log | 15.3571 | 430 | 0.9418 | -0.0425 | 0.9418 | 0.9705 |
267
+ | No log | 15.4286 | 432 | 1.0076 | -0.0073 | 1.0076 | 1.0038 |
268
+ | No log | 15.5 | 434 | 0.9576 | -0.0359 | 0.9576 | 0.9786 |
269
+ | No log | 15.5714 | 436 | 0.9471 | 0.0822 | 0.9471 | 0.9732 |
270
+ | No log | 15.6429 | 438 | 0.9630 | 0.0110 | 0.9630 | 0.9813 |
271
+ | No log | 15.7143 | 440 | 0.9874 | 0.1829 | 0.9874 | 0.9937 |
272
+ | No log | 15.7857 | 442 | 1.0033 | 0.0452 | 1.0033 | 1.0016 |
273
+ | No log | 15.8571 | 444 | 0.9532 | 0.0091 | 0.9532 | 0.9763 |
274
+ | No log | 15.9286 | 446 | 0.9238 | -0.0767 | 0.9238 | 0.9611 |
275
+ | No log | 16.0 | 448 | 0.8945 | -0.0755 | 0.8945 | 0.9458 |
276
+ | No log | 16.0714 | 450 | 0.8467 | 0.0247 | 0.8467 | 0.9202 |
277
+ | No log | 16.1429 | 452 | 0.8840 | -0.0743 | 0.8840 | 0.9402 |
278
+ | No log | 16.2143 | 454 | 0.9460 | -0.0755 | 0.9460 | 0.9726 |
279
+ | No log | 16.2857 | 456 | 0.9678 | 0.0378 | 0.9678 | 0.9838 |
280
+ | No log | 16.3571 | 458 | 0.9606 | 0.0361 | 0.9606 | 0.9801 |
281
+ | No log | 16.4286 | 460 | 0.9903 | 0.0875 | 0.9903 | 0.9952 |
282
+ | No log | 16.5 | 462 | 1.0051 | 0.1575 | 1.0051 | 1.0026 |
283
+ | No log | 16.5714 | 464 | 1.0356 | 0.0932 | 1.0356 | 1.0177 |
284
+ | No log | 16.6429 | 466 | 1.0027 | 0.0960 | 1.0027 | 1.0014 |
285
+ | No log | 16.7143 | 468 | 0.9286 | 0.0810 | 0.9286 | 0.9637 |
286
+ | No log | 16.7857 | 470 | 0.8710 | 0.0562 | 0.8710 | 0.9333 |
287
+ | No log | 16.8571 | 472 | 0.8872 | -0.0441 | 0.8872 | 0.9419 |
288
+ | No log | 16.9286 | 474 | 0.8730 | -0.0441 | 0.8730 | 0.9343 |
289
+ | No log | 17.0 | 476 | 0.8498 | -0.0425 | 0.8498 | 0.9219 |
290
+ | No log | 17.0714 | 478 | 0.8643 | -0.0441 | 0.8643 | 0.9297 |
291
+ | No log | 17.1429 | 480 | 0.8460 | -0.0008 | 0.8460 | 0.9198 |
292
+ | No log | 17.2143 | 482 | 0.8079 | 0.0588 | 0.8079 | 0.8988 |
293
+ | No log | 17.2857 | 484 | 0.7694 | 0.1318 | 0.7694 | 0.8771 |
294
+ | No log | 17.3571 | 486 | 0.7761 | 0.1379 | 0.7761 | 0.8810 |
295
+ | No log | 17.4286 | 488 | 0.8171 | 0.0191 | 0.8171 | 0.9040 |
296
+ | No log | 17.5 | 490 | 0.8543 | -0.0316 | 0.8543 | 0.9243 |
297
+ | No log | 17.5714 | 492 | 0.8294 | 0.1379 | 0.8294 | 0.9107 |
298
+ | No log | 17.6429 | 494 | 0.8203 | 0.1778 | 0.8203 | 0.9057 |
299
+ | No log | 17.7143 | 496 | 0.8388 | 0.1729 | 0.8388 | 0.9159 |
300
+ | No log | 17.7857 | 498 | 0.8601 | 0.1729 | 0.8601 | 0.9274 |
301
+ | 0.3787 | 17.8571 | 500 | 0.8526 | 0.1778 | 0.8526 | 0.9234 |
302
+ | 0.3787 | 17.9286 | 502 | 0.8511 | 0.0863 | 0.8511 | 0.9226 |
303
+ | 0.3787 | 18.0 | 504 | 0.8200 | 0.0863 | 0.8200 | 0.9056 |
304
+ | 0.3787 | 18.0714 | 506 | 0.7995 | 0.0375 | 0.7995 | 0.8942 |
305
+ | 0.3787 | 18.1429 | 508 | 0.8231 | 0.1333 | 0.8231 | 0.9072 |
306
+ | 0.3787 | 18.2143 | 510 | 0.8461 | 0.1362 | 0.8461 | 0.9198 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5528b0b948fde28cde815ab681a538e23fc67fdd3419c17e389c7f5226151c89
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e1a14711c49897b2059a687f7980cd7b4cca7580642e125699909d86a69ce59
3
+ size 5240