Maxwell-Jia
commited on
Upload 2 files
Browse files- configuration_fcn4flare.py +32 -0
- modeling_fcn4flare.py +242 -0
configuration_fcn4flare.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class FCN4FlareConfig(PretrainedConfig):
|
5 |
+
"""
|
6 |
+
Configuration class for FCN4Flare model.
|
7 |
+
"""
|
8 |
+
model_type = "fcn4flare"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
input_dim=3,
|
13 |
+
hidden_dim=64,
|
14 |
+
output_dim=1,
|
15 |
+
depth=4,
|
16 |
+
dilation=[1, 2, 4, 8],
|
17 |
+
maskdice_threshold=0.5,
|
18 |
+
dropout_rate=0.1,
|
19 |
+
kernel_size=3,
|
20 |
+
**kwargs
|
21 |
+
):
|
22 |
+
"""Initialize FCN4FlareConfig."""
|
23 |
+
super().__init__(**kwargs)
|
24 |
+
|
25 |
+
self.input_dim = input_dim
|
26 |
+
self.hidden_dim = hidden_dim
|
27 |
+
self.output_dim = output_dim
|
28 |
+
self.depth = depth
|
29 |
+
self.dilation = dilation
|
30 |
+
self.maskdice_threshold = maskdice_threshold
|
31 |
+
self.dropout_rate = dropout_rate
|
32 |
+
self.kernel_size = kernel_size
|
modeling_fcn4flare.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers.modeling_outputs import ModelOutput
|
8 |
+
from transformers.modeling_utils import PreTrainedModel
|
9 |
+
|
10 |
+
from .configuration_fcn4flare import FCN4FlareConfig
|
11 |
+
|
12 |
+
|
13 |
+
class MaskDiceLoss(nn.Module):
|
14 |
+
r"""
|
15 |
+
Computes the Mask Dice Loss between the predicted and target tensors.
|
16 |
+
$$
|
17 |
+
\text{loss} = 1 - \frac{2 \times \text{intersection} + \epsilon}{\text{predicted} + \text{target} + \epsilon}
|
18 |
+
$$
|
19 |
+
|
20 |
+
Args:
|
21 |
+
maskdice_threshold (float): Threshold value for the predicted tensor.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
loss (float): Computed Mask Dice Loss.
|
25 |
+
"""
|
26 |
+
def __init__(self, maskdice_threshold):
|
27 |
+
super().__init__()
|
28 |
+
self.maskdice_threshold = maskdice_threshold
|
29 |
+
|
30 |
+
def forward(self, inputs, targets):
|
31 |
+
"""
|
32 |
+
Computes the forward pass of the Mask Dice Loss.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
inputs (torch.Tensor): Predicted tensor.
|
36 |
+
targets (torch.Tensor): Target tensor.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
loss (float): Computed Mask Dice Loss.
|
40 |
+
"""
|
41 |
+
n = targets.size(0)
|
42 |
+
smooth = 1e-8
|
43 |
+
|
44 |
+
# Apply thresholding to inputs
|
45 |
+
inputs_act = torch.gt(inputs, self.maskdice_threshold)
|
46 |
+
inputs_act = inputs_act.long()
|
47 |
+
inputs = inputs * inputs_act
|
48 |
+
|
49 |
+
intersection = inputs * targets
|
50 |
+
dice_diff = (2 * intersection.sum(1) + smooth) / (inputs.sum(1) + targets.sum(1) + smooth * n)
|
51 |
+
loss = 1 - dice_diff.mean()
|
52 |
+
return loss
|
53 |
+
|
54 |
+
|
55 |
+
class NaNMask(nn.Module):
|
56 |
+
def __init__(self):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
def forward(self, inputs):
|
60 |
+
# Create a mask where NaNs are marked as 1
|
61 |
+
nan_mask = torch.isnan(inputs).float()
|
62 |
+
# Replace NaNs with 0 in the input tensor
|
63 |
+
inputs = torch.nan_to_num(inputs, nan=0.0)
|
64 |
+
# Concatenate the input tensor with the NaN mask
|
65 |
+
return torch.cat([inputs, nan_mask], dim=-1)
|
66 |
+
|
67 |
+
|
68 |
+
class SamePadConv(nn.Module):
|
69 |
+
def __init__(self, input_dim, output_dim, kernel_size, dilation=1):
|
70 |
+
super().__init__()
|
71 |
+
self.receptive_field = (kernel_size - 1) * dilation + 1
|
72 |
+
padding = self.receptive_field // 2
|
73 |
+
self.conv = nn.Conv1d(
|
74 |
+
input_dim, output_dim, kernel_size,
|
75 |
+
padding=padding,
|
76 |
+
dilation=dilation
|
77 |
+
)
|
78 |
+
self.batchnorm = nn.BatchNorm1d(output_dim)
|
79 |
+
self.remove = 1 if self.receptive_field % 2 == 0 else 0
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
x = self.conv(x)
|
83 |
+
x = self.batchnorm(x)
|
84 |
+
x = F.gelu(x)
|
85 |
+
if self.remove > 0:
|
86 |
+
x = x[:, :, : -self.remove]
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
class ConvBlock(nn.Module):
|
91 |
+
def __init__(self, input_dim, output_dim, kernel_size, dilation):
|
92 |
+
super().__init__()
|
93 |
+
self.conv1 = SamePadConv(input_dim, output_dim, kernel_size, dilation=dilation)
|
94 |
+
self.conv2 = SamePadConv(output_dim, output_dim, kernel_size, dilation=dilation)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
residual = x
|
98 |
+
x = self.conv1(x)
|
99 |
+
x = self.conv2(x)
|
100 |
+
return x + residual
|
101 |
+
|
102 |
+
|
103 |
+
class Backbone(nn.Module):
|
104 |
+
def __init__(self, input_dim, dim_list, dilation, kernel_size):
|
105 |
+
super().__init__()
|
106 |
+
self.net = nn.Sequential(*[
|
107 |
+
ConvBlock(
|
108 |
+
dim_list[i-1] if i > 0 else input_dim,
|
109 |
+
dim_list[i],
|
110 |
+
kernel_size=kernel_size,
|
111 |
+
dilation=dilation[i]
|
112 |
+
)
|
113 |
+
for i in range(len(dim_list))
|
114 |
+
])
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
return self.net(x)
|
118 |
+
|
119 |
+
|
120 |
+
class LightCurveEncoder(nn.Module):
|
121 |
+
def __init__(self, input_dim, output_dim, depth, dilation):
|
122 |
+
super().__init__()
|
123 |
+
self.mapping = nn.Conv1d(input_dim + 1, output_dim, 1) # +1 for NaN mask
|
124 |
+
self.backbone = Backbone(
|
125 |
+
output_dim,
|
126 |
+
[output_dim] * depth,
|
127 |
+
dilation,
|
128 |
+
kernel_size=3
|
129 |
+
)
|
130 |
+
self.repr_dropout = nn.Dropout(p=0.1)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
x = x.transpose(1, 2) # B x Ci x T
|
134 |
+
x = self.mapping(x) # B x Ch x T
|
135 |
+
x = self.backbone(x) # B x Co x T
|
136 |
+
x = self.repr_dropout(x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class SegHead(nn.Module):
|
141 |
+
def __init__(self, input_dim, output_dim):
|
142 |
+
super().__init__()
|
143 |
+
self.conv = SamePadConv(input_dim, input_dim, 3)
|
144 |
+
self.projector = nn.Conv1d(input_dim, output_dim, 1)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
# x: B x Ci x T
|
148 |
+
x = self.conv(x) # B x Ci x T
|
149 |
+
x = self.projector(x) # B x Co x T
|
150 |
+
x = x.transpose(1, 2) # B x T x Co
|
151 |
+
return x
|
152 |
+
|
153 |
+
|
154 |
+
class FCN4FlarePreTrainedModel(PreTrainedModel):
|
155 |
+
"""
|
156 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
|
157 |
+
"""
|
158 |
+
config_class = FCN4FlareConfig
|
159 |
+
base_model_prefix = "fcn4flare"
|
160 |
+
supports_gradient_checkpointing = True
|
161 |
+
|
162 |
+
def _init_weights(self, module):
|
163 |
+
if isinstance(module, nn.Conv1d):
|
164 |
+
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
|
165 |
+
elif isinstance(module, nn.BatchNorm1d):
|
166 |
+
nn.init.constant_(module.weight, 1)
|
167 |
+
nn.init.constant_(module.bias, 0)
|
168 |
+
|
169 |
+
|
170 |
+
@dataclass
|
171 |
+
class FCN4FlareOutput(ModelOutput):
|
172 |
+
"""
|
173 |
+
Output type of FCN4Flare.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
loss (`Optional[torch.FloatTensor]` of shape `(1,)`, *optional*):
|
177 |
+
Mask Dice loss if labels provided, None otherwise.
|
178 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, output_dim)`):
|
179 |
+
Prediction scores of the model.
|
180 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
|
181 |
+
Hidden states from the encoder.
|
182 |
+
"""
|
183 |
+
loss: Optional[torch.FloatTensor] = None
|
184 |
+
logits: torch.FloatTensor = None
|
185 |
+
hidden_states: torch.FloatTensor = None
|
186 |
+
|
187 |
+
|
188 |
+
class FCN4FlareModel(FCN4FlarePreTrainedModel):
|
189 |
+
def __init__(self, config: FCN4FlareConfig):
|
190 |
+
super().__init__(config)
|
191 |
+
|
192 |
+
self.nan_mask = NaNMask()
|
193 |
+
self.encoder = LightCurveEncoder(
|
194 |
+
config.input_dim,
|
195 |
+
config.hidden_dim,
|
196 |
+
config.depth,
|
197 |
+
config.dilation
|
198 |
+
)
|
199 |
+
self.seghead = SegHead(config.hidden_dim, config.output_dim)
|
200 |
+
|
201 |
+
# Initialize weights and apply final processing
|
202 |
+
self.post_init()
|
203 |
+
|
204 |
+
def forward(
|
205 |
+
self,
|
206 |
+
input_features,
|
207 |
+
sequence_mask=None,
|
208 |
+
labels=None,
|
209 |
+
return_dict=True,
|
210 |
+
):
|
211 |
+
# Apply NaN masking
|
212 |
+
inputs_with_mask = self.nan_mask(input_features)
|
213 |
+
|
214 |
+
# Encoder and segmentation head
|
215 |
+
outputs = self.encoder(inputs_with_mask)
|
216 |
+
logits = self.seghead(outputs)
|
217 |
+
|
218 |
+
# Loss calculation
|
219 |
+
loss = None
|
220 |
+
if labels is not None:
|
221 |
+
loss_fct = MaskDiceLoss(self.config.maskdice_threshold)
|
222 |
+
logits_sigmoid = torch.sigmoid(logits).squeeze(-1)
|
223 |
+
|
224 |
+
if sequence_mask is not None:
|
225 |
+
# Copy labels and replace padding positions with zeros
|
226 |
+
labels_for_loss = labels.clone()
|
227 |
+
labels_for_loss = torch.nan_to_num(labels_for_loss, nan=0.0)
|
228 |
+
labels_for_loss = labels_for_loss * sequence_mask
|
229 |
+
logits_sigmoid = logits_sigmoid * sequence_mask
|
230 |
+
loss = loss_fct(logits_sigmoid, labels_for_loss)
|
231 |
+
else:
|
232 |
+
loss = loss_fct(logits_sigmoid, labels)
|
233 |
+
|
234 |
+
if not return_dict:
|
235 |
+
output = (logits,)
|
236 |
+
return ((loss,) + output) if loss is not None else output
|
237 |
+
|
238 |
+
return FCN4FlareOutput(
|
239 |
+
loss=loss,
|
240 |
+
logits=logits,
|
241 |
+
hidden_states=outputs
|
242 |
+
)
|