# coding=utf-8 # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SpecT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from transformers.utils import logging from transformers.onnx import OnnxConfig from transformers.configuration_utils import PretrainedConfig logger = logging.get_logger(__name__) # VIT_PRETRAINED_CONFIG_ARCHIVE_MAP = { # "google/vit-base-patch16-224": "https://huggingface.co./vit-base-patch16-224/resolve/main/config.json", # # See all ViT models at https://huggingface.co./models?filter=vit # } class SpecTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SpecTModel`]. It is used to instantiate an SpecT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SpecT architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. spectral_length (`int`, *optional*, defaults to 4096): The length of each spectral. patch_size (`int`, *optional*, defaults to 64): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 1): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import ViTConfig, ViTModel >>> # Initializing a ViT vit-base-patch16-224 style configuration >>> configuration = ViTConfig() >>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration >>> model = ViTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "spect" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, spectral_length=4096, patch_size=64, num_channels=1, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.spectral_length = spectral_length self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias