|
import math |
|
from typing import Dict, List, Optional, Set, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ModelOutput |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
SequenceClassifierOutput |
|
) |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
|
|
from .configuration_spect import SpecTConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "SpecTConfig" |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "Maxwell-Jia/spect-base-patch64-4096-lamost" |
|
_EXPECTED_OUTPUT_SHAPE = [1, 65, 768] |
|
|
|
|
|
|
|
|
|
|
|
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"Maxwell-Jia/spect-base-patch64-4096-lamost", |
|
|
|
] |
|
|
|
|
|
class SpecTPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `spectral_values` of shape `(batch_size, sequence_length)` into |
|
`hidden_states` (segment embeddings) of shape `(batch_size, num_segments, hidden_size)` |
|
for a Transformer. |
|
""" |
|
|
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
spectral_length, patch_size = config.spectral_length, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
|
|
num_patches = spectral_length // patch_size |
|
self.spectral_length = spectral_length |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
|
|
self.projection = nn.Conv1d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, spectral_values: torch.Tensor) -> torch.Tensor: |
|
batch_size, spectral_length = spectral_values.shape |
|
if spectral_length != self.spectral_length: |
|
raise ValueError( |
|
f"Spectral sequence length ({spectral_length}) doesn't match model" |
|
f" ({self.spectral_length})." |
|
) |
|
|
|
spectral_values = spectral_values.unsqueeze(1) |
|
embeddings = self.projection(spectral_values).transpose(1, 2) |
|
return embeddings |
|
|
|
|
|
class SpecTEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position embeddings for spectral data. |
|
Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config: SpecTConfig, use_mask_token: bool = False) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None |
|
self.patch_embeddings = SpecTPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
flux_values: torch.Tensor, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
) -> torch.Tensor: |
|
batch_size = flux_values.shape[0] |
|
embeddings = self.patch_embeddings(flux_values) |
|
|
|
if bool_masked_pos is not None: |
|
seq_length = embeddings.shape[1] |
|
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) |
|
|
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
|
|
|
|
embeddings = embeddings + self.position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
class SpecTSelfAttention(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
class SpecTSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SpecTAttention(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.attention = SpecTSelfAttention(config) |
|
self.output = SpecTSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads: Set[int]) -> None: |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class SpecTIntermediate(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SpecTOutput(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
class SpecTLayer(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = SpecTAttention(config) |
|
self.intermediate = SpecTIntermediate(config) |
|
self.output = SpecTOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
|
|
|
|
layer_output = self.output(layer_output, hidden_states) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class SpecTEncoder(nn.Module): |
|
def __init__(self, config: SpecTConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([SpecTLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class SpecTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = SpecTConfig |
|
base_model_prefix = "spect" |
|
main_input_name = "spectral_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SpecTEmbeddings", "SpecTLayer"] |
|
|
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data = nn.init.trunc_normal_( |
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range |
|
).to(module.weight.dtype) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, SpecTEmbeddings): |
|
module.position_embeddings.data = nn.init.trunc_normal_( |
|
module.position_embeddings.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.position_embeddings.dtype) |
|
|
|
module.cls_token.data = nn.init.trunc_normal_( |
|
module.cls_token.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.cls_token.dtype) |
|
|
|
|
|
SPECT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass |
|
designed for spectral data analysis. Use it as a regular PyTorch Module and refer to the PyTorch documentation |
|
for all matters related to general usage and behavior. |
|
|
|
Parameters: |
|
config ([`SpecTConfig`]): Model configuration class with all the parameters of the model specific to spectral |
|
data analysis. Initializing with a config file does not load the weights associated with the model, only |
|
the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
SPECT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
flux_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Spectral flux values across wavelengths for each sequence in the batch. |
|
Represents the input spectral data to be processed by the model. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
See `attentions` under returned tensors for more detail. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
See `hidden_states` under returned tensors for more detail. |
|
|
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
Relevant for models that incorporate some form of masked or self-supervised learning on spectral data. |
|
|
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
"The bare SpecT Model transformer outputting raw hidden-states without any specific head on top.", |
|
SPECT_START_DOCSTRING, |
|
) |
|
class SpecTModel(SpecTPreTrainedModel): |
|
config_class = SpecTConfig |
|
|
|
def __init__(self, config: SpecTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = SpecTEmbeddings(config, use_mask_token=use_mask_token) |
|
self.encoder = SpecTEncoder(config) |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.pooler = SpecTPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> SpecTPatchEmbeddings: |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(SPECT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPooling, |
|
config_class=_CONFIG_FOR_DOC, |
|
modality="vision", |
|
expected_output=_EXPECTED_OUTPUT_SHAPE, |
|
) |
|
def forward( |
|
self, |
|
flux_values: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if flux_values is None: |
|
raise ValueError("You have to specify flux_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
|
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype |
|
if flux_values.dtype != expected_dtype: |
|
flux_values = flux_values.to(expected_dtype) |
|
|
|
embedding_output = self.embeddings( |
|
flux_values, bool_masked_pos=bool_masked_pos |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class SpecTPooler(nn.Module): |
|
def __init__(self, config: SpecTConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
SpecT Model transformer with an squence classification head on top (a linear layer on top of the final hidden state |
|
of the [CLS] token). |
|
""", |
|
SPECT_START_DOCSTRING, |
|
) |
|
class SpecTForSequenceClassification(PreTrainedModel): |
|
""" |
|
This model is a modification of the SpecTModel for sequence classification tasks. It adds a classification head |
|
on top of the SpecTModel, making it suitable for tasks like spectral type classification from stellar spectra. |
|
""" |
|
config_class = SpecTConfig |
|
|
|
def __init__(self, config: SpecTConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
|
|
self.spect = SpecTModel(config, add_pooling_layer=False) |
|
|
|
|
|
self.classifier = nn.Linear(config.hidden_size, self.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
flux_values: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.spect( |
|
flux_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
pooled_output = sequence_output[:, 0, :] |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.num_labels == 1: |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |