SpecT-test / configuration_spect.py
Maxwell-Jia's picture
Upload model
9f16b22 verified
raw
history blame
5.18 kB
# coding=utf-8
# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SpecT model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from transformers.utils import logging
from transformers.onnx import OnnxConfig
from transformers.configuration_utils import PretrainedConfig
logger = logging.get_logger(__name__)
# VIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
# "google/vit-base-patch16-224": "https://huggingface.co./vit-base-patch16-224/resolve/main/config.json",
# # See all ViT models at https://huggingface.co./models?filter=vit
# }
class SpecTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SpecTModel`]. It is used to instantiate an SpecT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the SpecT architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
spectral_length (`int`, *optional*, defaults to 4096):
The length of each spectral.
patch_size (`int`, *optional*, defaults to 64):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 1):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import ViTConfig, ViTModel
>>> # Initializing a ViT vit-base-patch16-224 style configuration
>>> configuration = ViTConfig()
>>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration
>>> model = ViTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "spect"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
spectral_length=4096,
patch_size=64,
num_channels=1,
qkv_bias=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.spectral_length = spectral_length
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias