--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1691 - Precision: 0.9011 - Recall: 0.8913 - F1: 0.8962 - Accuracy: 0.9696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 13 | 1.3502 | 0.125 | 0.0217 | 0.0370 | 0.7293 | | No log | 2.0 | 26 | 0.8543 | 0.2432 | 0.0978 | 0.1395 | 0.8065 | | No log | 3.0 | 39 | 0.5831 | 0.4556 | 0.4457 | 0.4505 | 0.8652 | | No log | 4.0 | 52 | 0.4247 | 0.6495 | 0.6848 | 0.6667 | 0.9185 | | No log | 5.0 | 65 | 0.3273 | 0.7474 | 0.7717 | 0.7594 | 0.95 | | No log | 6.0 | 78 | 0.2706 | 0.8021 | 0.8370 | 0.8191 | 0.9587 | | No log | 7.0 | 91 | 0.2278 | 0.8804 | 0.8804 | 0.8804 | 0.9663 | | No log | 8.0 | 104 | 0.2166 | 0.8901 | 0.8804 | 0.8852 | 0.9663 | | No log | 9.0 | 117 | 0.2013 | 0.8804 | 0.8804 | 0.8804 | 0.9663 | | No log | 10.0 | 130 | 0.1881 | 0.8817 | 0.8913 | 0.8865 | 0.9674 | | No log | 11.0 | 143 | 0.1835 | 0.8817 | 0.8913 | 0.8865 | 0.9674 | | No log | 12.0 | 156 | 0.1754 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 13.0 | 169 | 0.1740 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 14.0 | 182 | 0.1676 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 15.0 | 195 | 0.1660 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 16.0 | 208 | 0.1678 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 17.0 | 221 | 0.1692 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 18.0 | 234 | 0.1701 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 19.0 | 247 | 0.1692 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | | No log | 20.0 | 260 | 0.1691 | 0.9011 | 0.8913 | 0.8962 | 0.9696 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cpu - Datasets 2.19.1 - Tokenizers 0.19.1