--- base_model: sentence-transformers/all-mpnet-base-v2 library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: The ambience is very calm and quiet:The ambience is very calm and quiet. - text: For great chinese food nearby, you have Wu:For great chinese food nearby, you have Wu Liang Ye and Grand Sichuan just a block away. - text: The menu choices are similar but the taste:The menu choices are similar but the taste lacked more flavor than it looked. - text: The food was authentic.:The food was authentic. - text: prompt to jump behind the bar and fix drinks, they:The staff is very kind and well trained, they're fast, they are always prompt to jump behind the bar and fix drinks, they know details of every item in the menu and make excelent recomendations. inference: false model-index: - name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.8170404156194555 name: F1 --- # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **spaCy Model:** en_core_web_trf - **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co./setfit-absa-aspect) - **SetFitABSA Polarity Model:** [MattiaTintori/Final_polarity_Colab](https://huggingface.co./MattiaTintori/Final_polarity_Colab) - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 2 | | | 0 | | ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.8170 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "setfit-absa-aspect", "MattiaTintori/Final_polarity_Colab", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 25.0463 | 79 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 1148 | | 1 | 607 | | 2 | 489 | ### Training Hyperparameters - batch_size: (64, 4) - num_epochs: (5, 32) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (5e-05, 5e-05) - head_learning_rate: 0.04 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:-------:|:-------------:|:---------------:| | 0.0014 | 1 | 0.3084 | - | | 0.0285 | 20 | 0.2735 | 0.2591 | | 0.0570 | 40 | 0.2228 | 0.2351 | | 0.0855 | 60 | 0.2071 | 0.1993 | | 0.1140 | 80 | 0.1522 | 0.1696 | | 0.1425 | 100 | 0.1441 | 0.1671 | | 0.1709 | 120 | 0.1632 | 0.161 | | 0.1994 | 140 | 0.0966 | 0.1575 | | 0.2279 | 160 | 0.1737 | 0.1504 | | 0.2564 | 180 | 0.1092 | 0.1671 | | 0.2849 | 200 | 0.1314 | 0.1459 | | 0.3134 | 220 | 0.0972 | 0.1483 | | 0.3419 | 240 | 0.1014 | 0.1537 | | 0.3704 | 260 | 0.0506 | 0.1514 | | **0.3989** | **280** | **0.0817** | **0.143** | | 0.4274 | 300 | 0.0592 | 0.1526 | | 0.4558 | 320 | 0.0311 | 0.1562 | | 0.4843 | 340 | 0.038 | 0.1546 | | 0.5128 | 360 | 0.0852 | 0.1497 | | 0.5413 | 380 | 0.0359 | 0.144 | | 0.5698 | 400 | 0.0449 | 0.1639 | | 0.5983 | 420 | 0.0314 | 0.1517 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.6 - Transformers: 4.39.0 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```