MattiaTintori
commited on
Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +240 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +6 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- absa
|
10 |
+
- sentence-transformers
|
11 |
+
- text-classification
|
12 |
+
- generated_from_setfit_trainer
|
13 |
+
widget:
|
14 |
+
- text: The ambience is very calm and quiet:The ambience is very calm and quiet.
|
15 |
+
- text: For great chinese food nearby, you have Wu:For great chinese food nearby,
|
16 |
+
you have Wu Liang Ye and Grand Sichuan just a block away.
|
17 |
+
- text: The menu choices are similar but the taste:The menu choices are similar but
|
18 |
+
the taste lacked more flavor than it looked.
|
19 |
+
- text: The food was authentic.:The food was authentic.
|
20 |
+
- text: prompt to jump behind the bar and fix drinks, they:The staff is very kind
|
21 |
+
and well trained, they're fast, they are always prompt to jump behind the bar
|
22 |
+
and fix drinks, they know details of every item in the menu and make excelent
|
23 |
+
recomendations.
|
24 |
+
inference: false
|
25 |
+
model-index:
|
26 |
+
- name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-classification
|
30 |
+
name: Text Classification
|
31 |
+
dataset:
|
32 |
+
name: Unknown
|
33 |
+
type: unknown
|
34 |
+
split: test
|
35 |
+
metrics:
|
36 |
+
- type: f1
|
37 |
+
value: 0.8170404156194555
|
38 |
+
name: F1
|
39 |
+
---
|
40 |
+
|
41 |
+
# SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
|
42 |
+
|
43 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
|
44 |
+
|
45 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
46 |
+
|
47 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
48 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
49 |
+
|
50 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
51 |
+
|
52 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
53 |
+
2. Use a SetFit model to filter these possible aspect span candidates.
|
54 |
+
3. **Use this SetFit model to classify the filtered aspect span candidates.**
|
55 |
+
|
56 |
+
## Model Details
|
57 |
+
|
58 |
+
### Model Description
|
59 |
+
- **Model Type:** SetFit
|
60 |
+
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
|
61 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
62 |
+
- **spaCy Model:** en_core_web_trf
|
63 |
+
- **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
|
64 |
+
- **SetFitABSA Polarity Model:** [MattiaTintori/Final_polarity_Colab](https://huggingface.co/MattiaTintori/Final_polarity_Colab)
|
65 |
+
- **Maximum Sequence Length:** 384 tokens
|
66 |
+
- **Number of Classes:** 3 classes
|
67 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
68 |
+
<!-- - **Language:** Unknown -->
|
69 |
+
<!-- - **License:** Unknown -->
|
70 |
+
|
71 |
+
### Model Sources
|
72 |
+
|
73 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
74 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
75 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
76 |
+
|
77 |
+
### Model Labels
|
78 |
+
| Label | Examples |
|
79 |
+
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
80 |
+
| 1 | <ul><li>'waiter) We got no cheese offered for the pasta,:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li><li>'by a busboy, not waiter) We got no cheese:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li><li>'for the pasta, our water and wine glasses remained EMPTY our entire meal:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li></ul> |
|
81 |
+
| 2 | <ul><li>'(food was delivered by a busboy:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li><li>'glasses remained EMPTY our entire meal, when we would have:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li><li>'spent another $20 on wine.:(food was delivered by a busboy, not waiter) We got no cheese offered for the pasta, our water and wine glasses remained EMPTY our entire meal, when we would have easily spent another $20 on wine.'</li></ul> |
|
82 |
+
| 0 | <ul><li>'few cocktails and enjoy our surroundings and each other.:20 minutes for our reservation but it gave us time to have a few cocktails and enjoy our surroundings and each other.'</li><li>'Barbecued codfish was gorgeously moist - as:Barbecued codfish was gorgeously moist - as if poached - yet the fabulous texture was let down by curiously bland seasoning - a spice rub might have overwhelmed, however herb mix or other sauce would have done much to enhance.'</li><li>'Even though its good seafood, the prices are too:Even though its good seafood, the prices are too high.'</li></ul> |
|
83 |
+
|
84 |
+
## Evaluation
|
85 |
+
|
86 |
+
### Metrics
|
87 |
+
| Label | F1 |
|
88 |
+
|:--------|:-------|
|
89 |
+
| **all** | 0.8170 |
|
90 |
+
|
91 |
+
## Uses
|
92 |
+
|
93 |
+
### Direct Use for Inference
|
94 |
+
|
95 |
+
First install the SetFit library:
|
96 |
+
|
97 |
+
```bash
|
98 |
+
pip install setfit
|
99 |
+
```
|
100 |
+
|
101 |
+
Then you can load this model and run inference.
|
102 |
+
|
103 |
+
```python
|
104 |
+
from setfit import AbsaModel
|
105 |
+
|
106 |
+
# Download from the 🤗 Hub
|
107 |
+
model = AbsaModel.from_pretrained(
|
108 |
+
"setfit-absa-aspect",
|
109 |
+
"MattiaTintori/Final_polarity_Colab",
|
110 |
+
)
|
111 |
+
# Run inference
|
112 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
113 |
+
```
|
114 |
+
|
115 |
+
<!--
|
116 |
+
### Downstream Use
|
117 |
+
|
118 |
+
*List how someone could finetune this model on their own dataset.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Out-of-Scope Use
|
123 |
+
|
124 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
## Bias, Risks and Limitations
|
129 |
+
|
130 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
131 |
+
-->
|
132 |
+
|
133 |
+
<!--
|
134 |
+
### Recommendations
|
135 |
+
|
136 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
137 |
+
-->
|
138 |
+
|
139 |
+
## Training Details
|
140 |
+
|
141 |
+
### Training Set Metrics
|
142 |
+
| Training set | Min | Median | Max |
|
143 |
+
|:-------------|:----|:--------|:----|
|
144 |
+
| Word count | 1 | 25.0463 | 79 |
|
145 |
+
|
146 |
+
| Label | Training Sample Count |
|
147 |
+
|:------|:----------------------|
|
148 |
+
| 0 | 1148 |
|
149 |
+
| 1 | 607 |
|
150 |
+
| 2 | 489 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- batch_size: (64, 4)
|
154 |
+
- num_epochs: (5, 32)
|
155 |
+
- max_steps: -1
|
156 |
+
- sampling_strategy: oversampling
|
157 |
+
- num_iterations: 10
|
158 |
+
- body_learning_rate: (5e-05, 5e-05)
|
159 |
+
- head_learning_rate: 0.04
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: True
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- l2_weight: 0.01
|
167 |
+
- seed: 42
|
168 |
+
- eval_max_steps: -1
|
169 |
+
- load_best_model_at_end: True
|
170 |
+
|
171 |
+
### Training Results
|
172 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
173 |
+
|:----------:|:-------:|:-------------:|:---------------:|
|
174 |
+
| 0.0014 | 1 | 0.3084 | - |
|
175 |
+
| 0.0285 | 20 | 0.2735 | 0.2591 |
|
176 |
+
| 0.0570 | 40 | 0.2228 | 0.2351 |
|
177 |
+
| 0.0855 | 60 | 0.2071 | 0.1993 |
|
178 |
+
| 0.1140 | 80 | 0.1522 | 0.1696 |
|
179 |
+
| 0.1425 | 100 | 0.1441 | 0.1671 |
|
180 |
+
| 0.1709 | 120 | 0.1632 | 0.161 |
|
181 |
+
| 0.1994 | 140 | 0.0966 | 0.1575 |
|
182 |
+
| 0.2279 | 160 | 0.1737 | 0.1504 |
|
183 |
+
| 0.2564 | 180 | 0.1092 | 0.1671 |
|
184 |
+
| 0.2849 | 200 | 0.1314 | 0.1459 |
|
185 |
+
| 0.3134 | 220 | 0.0972 | 0.1483 |
|
186 |
+
| 0.3419 | 240 | 0.1014 | 0.1537 |
|
187 |
+
| 0.3704 | 260 | 0.0506 | 0.1514 |
|
188 |
+
| **0.3989** | **280** | **0.0817** | **0.143** |
|
189 |
+
| 0.4274 | 300 | 0.0592 | 0.1526 |
|
190 |
+
| 0.4558 | 320 | 0.0311 | 0.1562 |
|
191 |
+
| 0.4843 | 340 | 0.038 | 0.1546 |
|
192 |
+
| 0.5128 | 360 | 0.0852 | 0.1497 |
|
193 |
+
| 0.5413 | 380 | 0.0359 | 0.144 |
|
194 |
+
| 0.5698 | 400 | 0.0449 | 0.1639 |
|
195 |
+
| 0.5983 | 420 | 0.0314 | 0.1517 |
|
196 |
+
|
197 |
+
* The bold row denotes the saved checkpoint.
|
198 |
+
### Framework Versions
|
199 |
+
- Python: 3.10.12
|
200 |
+
- SetFit: 1.0.3
|
201 |
+
- Sentence Transformers: 3.0.1
|
202 |
+
- spaCy: 3.7.6
|
203 |
+
- Transformers: 4.39.0
|
204 |
+
- PyTorch: 2.4.0+cu121
|
205 |
+
- Datasets: 2.21.0
|
206 |
+
- Tokenizers: 0.15.2
|
207 |
+
|
208 |
+
## Citation
|
209 |
+
|
210 |
+
### BibTeX
|
211 |
+
```bibtex
|
212 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
213 |
+
doi = {10.48550/ARXIV.2209.11055},
|
214 |
+
url = {https://arxiv.org/abs/2209.11055},
|
215 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
216 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
217 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
218 |
+
publisher = {arXiv},
|
219 |
+
year = {2022},
|
220 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
221 |
+
}
|
222 |
+
```
|
223 |
+
|
224 |
+
<!--
|
225 |
+
## Glossary
|
226 |
+
|
227 |
+
*Clearly define terms in order to be accessible across audiences.*
|
228 |
+
-->
|
229 |
+
|
230 |
+
<!--
|
231 |
+
## Model Card Authors
|
232 |
+
|
233 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
234 |
+
-->
|
235 |
+
|
236 |
+
<!--
|
237 |
+
## Model Card Contact
|
238 |
+
|
239 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
240 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_280",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.39.0",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"span_context": 5,
|
4 |
+
"normalize_embeddings": true,
|
5 |
+
"spacy_model": "en_core_web_trf"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2128d6e9d5ff1127d5de640f2a32fe2f811f6f36bae83cf06cc1b116085c59
|
3 |
+
size 437967672
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57306dc9ec058760839f6b32a369873eeaec2deede3a45b680b750cd39d5f922
|
3 |
+
size 13847
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 384,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|