MattiaParavisi
commited on
Commit
•
da6f3b9
1
Parent(s):
209be63
End of training
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -46,111 +46,111 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:----:|:---------------:|
|
49 |
-
| 0.
|
50 |
-
| 0.
|
51 |
-
| 0.
|
52 |
-
| 0.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.0021 | 8.0 | 80 | 0.
|
57 |
-
| 0.0013 | 9.0 | 90 | 0.
|
58 |
-
| 0.0011 | 10.0 | 100 | 0.
|
59 |
-
| 0.
|
60 |
-
| 0.0009 | 12.0 | 120 | 0.
|
61 |
-
| 0.
|
62 |
-
| 0.0008 | 14.0 | 140 | 0.
|
63 |
-
| 0.0007 | 15.0 | 150 | 0.
|
64 |
-
| 0.0007 | 16.0 | 160 | 0.
|
65 |
-
| 0.0006 | 17.0 | 170 | 0.
|
66 |
-
| 0.0006 | 18.0 | 180 | 0.
|
67 |
-
| 0.0005 | 19.0 | 190 | 0.
|
68 |
-
| 0.0005 | 20.0 | 200 | 0.
|
69 |
-
| 0.0005 | 21.0 | 210 | 0.
|
70 |
-
| 0.0005 | 22.0 | 220 | 0.
|
71 |
-
| 0.
|
72 |
-
| 0.0004 | 24.0 | 240 | 0.
|
73 |
-
| 0.0004 | 25.0 | 250 | 0.
|
74 |
-
| 0.0004 | 26.0 | 260 | 0.
|
75 |
-
| 0.0004 | 27.0 | 270 | 0.
|
76 |
-
| 0.0004 | 28.0 | 280 | 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.0003 | 31.0 | 310 | 0.
|
80 |
-
| 0.
|
81 |
-
| 0.0003 | 33.0 | 330 | 0.
|
82 |
-
| 0.0003 | 34.0 | 340 | 0.
|
83 |
-
| 0.0003 | 35.0 | 350 | 0.
|
84 |
-
| 0.0003 | 36.0 | 360 | 0.
|
85 |
-
| 0.0003 | 37.0 | 370 | 0.
|
86 |
-
| 0.0003 | 38.0 | 380 | 0.
|
87 |
-
| 0.0003 | 39.0 | 390 | 0.
|
88 |
-
| 0.0003 | 40.0 | 400 | 0.
|
89 |
-
| 0.0003 | 41.0 | 410 | 0.
|
90 |
-
| 0.0003 | 42.0 | 420 | 0.
|
91 |
-
| 0.
|
92 |
-
| 0.0002 | 44.0 | 440 | 0.
|
93 |
-
| 0.0002 | 45.0 | 450 | 0.
|
94 |
-
| 0.0002 | 46.0 | 460 | 0.
|
95 |
-
| 0.0002 | 47.0 | 470 | 0.
|
96 |
-
| 0.0002 | 48.0 | 480 | 0.
|
97 |
-
| 0.0002 | 49.0 | 490 | 0.
|
98 |
-
| 0.0002 | 50.0 | 500 | 0.
|
99 |
-
| 0.0002 | 51.0 | 510 | 0.
|
100 |
-
| 0.0002 | 52.0 | 520 | 0.
|
101 |
-
| 0.0002 | 53.0 | 530 | 0.
|
102 |
-
| 0.0002 | 54.0 | 540 | 0.
|
103 |
-
| 0.0002 | 55.0 | 550 | 0.
|
104 |
-
| 0.0002 | 56.0 | 560 | 0.
|
105 |
-
| 0.0002 | 57.0 | 570 | 0.
|
106 |
-
| 0.0002 | 58.0 | 580 | 0.
|
107 |
-
| 0.0002 | 59.0 | 590 | 0.
|
108 |
-
| 0.0002 | 60.0 | 600 | 0.
|
109 |
-
| 0.0002 | 61.0 | 610 | 0.
|
110 |
-
| 0.0002 | 62.0 | 620 | 0.
|
111 |
-
| 0.0002 | 63.0 | 630 | 0.
|
112 |
-
| 0.0002 | 64.0 | 640 | 0.
|
113 |
-
| 0.0002 | 65.0 | 650 | 0.
|
114 |
-
| 0.0002 | 66.0 | 660 | 0.
|
115 |
-
| 0.0002 | 67.0 | 670 | 0.
|
116 |
-
| 0.0002 | 68.0 | 680 | 0.
|
117 |
-
| 0.0002 | 69.0 | 690 | 0.
|
118 |
-
| 0.0002 | 70.0 | 700 | 0.
|
119 |
-
| 0.0002 | 71.0 | 710 | 0.
|
120 |
-
| 0.0002 | 72.0 | 720 | 0.
|
121 |
-
| 0.0002 | 73.0 | 730 | 0.
|
122 |
-
| 0.0002 | 74.0 | 740 | 0.
|
123 |
-
| 0.
|
124 |
-
| 0.0002 | 76.0 | 760 | 0.
|
125 |
-
| 0.0002 | 77.0 | 770 | 0.
|
126 |
-
| 0.
|
127 |
-
| 0.0002 | 79.0 | 790 | 0.
|
128 |
-
| 0.0002 | 80.0 | 800 | 0.
|
129 |
-
| 0.
|
130 |
-
| 0.0002 | 82.0 | 820 | 0.
|
131 |
-
| 0.0001 | 83.0 | 830 | 0.
|
132 |
-
| 0.
|
133 |
-
| 0.0001 | 85.0 | 850 | 0.
|
134 |
-
| 0.0001 | 86.0 | 860 | 0.
|
135 |
-
| 0.
|
136 |
-
| 0.0001 | 88.0 | 880 | 0.
|
137 |
-
| 0.0001 | 89.0 | 890 | 0.
|
138 |
-
| 0.0001 | 90.0 | 900 | 0.
|
139 |
-
| 0.
|
140 |
-
| 0.0001 | 92.0 | 920 | 0.
|
141 |
-
| 0.0001 | 93.0 | 930 | 0.
|
142 |
-
| 0.0001 | 94.0 | 940 | 0.
|
143 |
-
| 0.0001 | 95.0 | 950 | 0.
|
144 |
-
| 0.0001 | 96.0 | 960 | 0.
|
145 |
-
| 0.0001 | 97.0 | 970 | 0.
|
146 |
-
| 0.0001 | 98.0 | 980 | 0.
|
147 |
-
| 0.0001 | 99.0 | 990 | 0.
|
148 |
-
| 0.0001 | 100.0 | 1000 | 0.
|
149 |
|
150 |
|
151 |
### Framework versions
|
152 |
|
153 |
-
- Transformers 4.
|
154 |
- Pytorch 2.0.1+cu118
|
155 |
- Datasets 2.14.5
|
156 |
-
- Tokenizers 0.
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0001
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:----:|:---------------:|
|
49 |
+
| 0.5564 | 1.0 | 10 | 0.3900 |
|
50 |
+
| 0.3348 | 2.0 | 20 | 0.1773 |
|
51 |
+
| 0.1584 | 3.0 | 30 | 0.0763 |
|
52 |
+
| 0.0758 | 4.0 | 40 | 0.0294 |
|
53 |
+
| 0.0322 | 5.0 | 50 | 0.0055 |
|
54 |
+
| 0.0075 | 6.0 | 60 | 0.0023 |
|
55 |
+
| 0.0035 | 7.0 | 70 | 0.0015 |
|
56 |
+
| 0.0021 | 8.0 | 80 | 0.0011 |
|
57 |
+
| 0.0013 | 9.0 | 90 | 0.0009 |
|
58 |
+
| 0.0011 | 10.0 | 100 | 0.0008 |
|
59 |
+
| 0.0009 | 11.0 | 110 | 0.0008 |
|
60 |
+
| 0.0009 | 12.0 | 120 | 0.0007 |
|
61 |
+
| 0.0008 | 13.0 | 130 | 0.0006 |
|
62 |
+
| 0.0008 | 14.0 | 140 | 0.0006 |
|
63 |
+
| 0.0007 | 15.0 | 150 | 0.0006 |
|
64 |
+
| 0.0007 | 16.0 | 160 | 0.0005 |
|
65 |
+
| 0.0006 | 17.0 | 170 | 0.0005 |
|
66 |
+
| 0.0006 | 18.0 | 180 | 0.0005 |
|
67 |
+
| 0.0005 | 19.0 | 190 | 0.0004 |
|
68 |
+
| 0.0005 | 20.0 | 200 | 0.0004 |
|
69 |
+
| 0.0005 | 21.0 | 210 | 0.0004 |
|
70 |
+
| 0.0005 | 22.0 | 220 | 0.0004 |
|
71 |
+
| 0.0005 | 23.0 | 230 | 0.0004 |
|
72 |
+
| 0.0004 | 24.0 | 240 | 0.0004 |
|
73 |
+
| 0.0004 | 25.0 | 250 | 0.0003 |
|
74 |
+
| 0.0004 | 26.0 | 260 | 0.0003 |
|
75 |
+
| 0.0004 | 27.0 | 270 | 0.0003 |
|
76 |
+
| 0.0004 | 28.0 | 280 | 0.0003 |
|
77 |
+
| 0.0003 | 29.0 | 290 | 0.0003 |
|
78 |
+
| 0.0003 | 30.0 | 300 | 0.0003 |
|
79 |
+
| 0.0003 | 31.0 | 310 | 0.0003 |
|
80 |
+
| 0.0004 | 32.0 | 320 | 0.0003 |
|
81 |
+
| 0.0003 | 33.0 | 330 | 0.0003 |
|
82 |
+
| 0.0003 | 34.0 | 340 | 0.0003 |
|
83 |
+
| 0.0003 | 35.0 | 350 | 0.0003 |
|
84 |
+
| 0.0003 | 36.0 | 360 | 0.0003 |
|
85 |
+
| 0.0003 | 37.0 | 370 | 0.0002 |
|
86 |
+
| 0.0003 | 38.0 | 380 | 0.0002 |
|
87 |
+
| 0.0003 | 39.0 | 390 | 0.0002 |
|
88 |
+
| 0.0003 | 40.0 | 400 | 0.0002 |
|
89 |
+
| 0.0003 | 41.0 | 410 | 0.0002 |
|
90 |
+
| 0.0003 | 42.0 | 420 | 0.0002 |
|
91 |
+
| 0.0002 | 43.0 | 430 | 0.0002 |
|
92 |
+
| 0.0002 | 44.0 | 440 | 0.0002 |
|
93 |
+
| 0.0002 | 45.0 | 450 | 0.0002 |
|
94 |
+
| 0.0002 | 46.0 | 460 | 0.0002 |
|
95 |
+
| 0.0002 | 47.0 | 470 | 0.0002 |
|
96 |
+
| 0.0002 | 48.0 | 480 | 0.0002 |
|
97 |
+
| 0.0002 | 49.0 | 490 | 0.0002 |
|
98 |
+
| 0.0002 | 50.0 | 500 | 0.0002 |
|
99 |
+
| 0.0002 | 51.0 | 510 | 0.0002 |
|
100 |
+
| 0.0002 | 52.0 | 520 | 0.0002 |
|
101 |
+
| 0.0002 | 53.0 | 530 | 0.0002 |
|
102 |
+
| 0.0002 | 54.0 | 540 | 0.0002 |
|
103 |
+
| 0.0002 | 55.0 | 550 | 0.0002 |
|
104 |
+
| 0.0002 | 56.0 | 560 | 0.0002 |
|
105 |
+
| 0.0002 | 57.0 | 570 | 0.0002 |
|
106 |
+
| 0.0002 | 58.0 | 580 | 0.0002 |
|
107 |
+
| 0.0002 | 59.0 | 590 | 0.0002 |
|
108 |
+
| 0.0002 | 60.0 | 600 | 0.0002 |
|
109 |
+
| 0.0002 | 61.0 | 610 | 0.0002 |
|
110 |
+
| 0.0002 | 62.0 | 620 | 0.0002 |
|
111 |
+
| 0.0002 | 63.0 | 630 | 0.0002 |
|
112 |
+
| 0.0002 | 64.0 | 640 | 0.0002 |
|
113 |
+
| 0.0002 | 65.0 | 650 | 0.0002 |
|
114 |
+
| 0.0002 | 66.0 | 660 | 0.0002 |
|
115 |
+
| 0.0002 | 67.0 | 670 | 0.0002 |
|
116 |
+
| 0.0002 | 68.0 | 680 | 0.0002 |
|
117 |
+
| 0.0002 | 69.0 | 690 | 0.0002 |
|
118 |
+
| 0.0002 | 70.0 | 700 | 0.0002 |
|
119 |
+
| 0.0002 | 71.0 | 710 | 0.0002 |
|
120 |
+
| 0.0002 | 72.0 | 720 | 0.0002 |
|
121 |
+
| 0.0002 | 73.0 | 730 | 0.0002 |
|
122 |
+
| 0.0002 | 74.0 | 740 | 0.0002 |
|
123 |
+
| 0.0001 | 75.0 | 750 | 0.0002 |
|
124 |
+
| 0.0002 | 76.0 | 760 | 0.0002 |
|
125 |
+
| 0.0002 | 77.0 | 770 | 0.0002 |
|
126 |
+
| 0.0001 | 78.0 | 780 | 0.0002 |
|
127 |
+
| 0.0002 | 79.0 | 790 | 0.0002 |
|
128 |
+
| 0.0002 | 80.0 | 800 | 0.0002 |
|
129 |
+
| 0.0001 | 81.0 | 810 | 0.0002 |
|
130 |
+
| 0.0002 | 82.0 | 820 | 0.0002 |
|
131 |
+
| 0.0001 | 83.0 | 830 | 0.0001 |
|
132 |
+
| 0.0001 | 84.0 | 840 | 0.0001 |
|
133 |
+
| 0.0001 | 85.0 | 850 | 0.0001 |
|
134 |
+
| 0.0001 | 86.0 | 860 | 0.0001 |
|
135 |
+
| 0.0001 | 87.0 | 870 | 0.0001 |
|
136 |
+
| 0.0001 | 88.0 | 880 | 0.0001 |
|
137 |
+
| 0.0001 | 89.0 | 890 | 0.0001 |
|
138 |
+
| 0.0001 | 90.0 | 900 | 0.0001 |
|
139 |
+
| 0.0001 | 91.0 | 910 | 0.0001 |
|
140 |
+
| 0.0001 | 92.0 | 920 | 0.0001 |
|
141 |
+
| 0.0001 | 93.0 | 930 | 0.0001 |
|
142 |
+
| 0.0001 | 94.0 | 940 | 0.0001 |
|
143 |
+
| 0.0001 | 95.0 | 950 | 0.0001 |
|
144 |
+
| 0.0001 | 96.0 | 960 | 0.0001 |
|
145 |
+
| 0.0001 | 97.0 | 970 | 0.0001 |
|
146 |
+
| 0.0001 | 98.0 | 980 | 0.0001 |
|
147 |
+
| 0.0001 | 99.0 | 990 | 0.0001 |
|
148 |
+
| 0.0001 | 100.0 | 1000 | 0.0001 |
|
149 |
|
150 |
|
151 |
### Framework versions
|
152 |
|
153 |
+
- Transformers 4.34.0
|
154 |
- Pytorch 2.0.1+cu118
|
155 |
- Datasets 2.14.5
|
156 |
+
- Tokenizers 0.14.0
|