--- license: mit language: - en metrics: - accuracy pipeline_tag: text-generation --- # MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning Paper: [https://arxiv.org/pdf/2310.03731.pdf](https://arxiv.org/pdf/2310.03731.pdf) Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder) ## Introduction We introduce MathCoder, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. | Base Model: Llama-2 | Base Model: Code Llama | |-------------------------------------------------------------------|-----------------------------------------------------------------------| | [MathCoder-L-7B](https://huggingface.co./MathLLM/MathCoder-L-7B) | [MathCoder-CL-7B](https://huggingface.co./MathLLM/MathCoder-CL-7B) | | [MathCoder-L-13B](https://huggingface.co./MathLLM/MathCoder-L-13B) | [MathCoder-CL-34B](https://huggingface.co./MathLLM/MathCoder-CL-34B) | ## Training Data The models are trained on the [MathCodeInstruct](https://huggingface.co./MathLLM/MathCodeInstruct) Dataset. ## Training Procedure The models are fine-tuned with the MathCodeInstruct dataset using the original Llama-2 and CodeLlama models as base models. Check out our paper and repo for more details. ## Evaluation
## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for datails. ## Citation Please cite the paper if you use our data, model or code. ``` @misc{wang2023mathcoder, title={MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning}, author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li}, year={2023}, eprint={2310.03731}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```