---
license: mit
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
Paper: [https://arxiv.org/pdf/2310.03731.pdf](https://arxiv.org/pdf/2310.03731.pdf)
Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder)
## Introduction
We introduce MathCoder, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving.
| Base Model: Llama-2 | Base Model: Code Llama |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| [MathCoder-L-7B](https://huggingface.co./MathLLM/MathCoder-L-7B) | [MathCoder-CL-7B](https://huggingface.co./MathLLM/MathCoder-CL-7B) |
| [MathCoder-L-13B](https://huggingface.co./MathLLM/MathCoder-L-13B) | [MathCoder-CL-34B](https://huggingface.co./MathLLM/MathCoder-CL-34B) |
## Training Data
The models are trained on the [MathCodeInstruct](https://huggingface.co./datasets/MathLLM/MathCodeInstruct) Dataset.
## Training Procedure
The models are fine-tuned with the MathCodeInstruct dataset using the original Llama-2 and CodeLlama models as base models. Check out our paper and repo for more details.
## Evaluation