Prakhar Bhandari
commited on
Commit
·
c8025cd
1
Parent(s):
2d9bc04
Modular v1.0
Browse files- kg_builder/.DS_Store +0 -0
- kg_builder/README.md +0 -0
- kg_builder/requirements.txt +10 -0
- kg_builder/src/.DS_Store +0 -0
- kg_builder/src/__init__.py +0 -0
- kg_builder/src/__pycache__/api_connections.cpython-39.pyc +0 -0
- kg_builder/src/__pycache__/knowledge_graph_builder.cpython-39.pyc +0 -0
- kg_builder/src/__pycache__/query_graph.cpython-39.pyc +0 -0
- kg_builder/src/api_connections.py +16 -0
- kg_builder/src/knowledge_graph_builder.py +138 -0
- kg_builder/src/main.py +33 -0
- kg_builder/src/query_graph.py +23 -0
- kg_creation.ipynb +0 -473
kg_builder/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
kg_builder/README.md
ADDED
File without changes
|
kg_builder/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
requests
|
4 |
+
openai
|
5 |
+
neo4j
|
6 |
+
wikipedia
|
7 |
+
tiktoken
|
8 |
+
langchain
|
9 |
+
langchain_openai
|
10 |
+
tqdm
|
kg_builder/src/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
kg_builder/src/__init__.py
ADDED
File without changes
|
kg_builder/src/__pycache__/api_connections.cpython-39.pyc
ADDED
Binary file (507 Bytes). View file
|
|
kg_builder/src/__pycache__/knowledge_graph_builder.cpython-39.pyc
ADDED
Binary file (7.19 kB). View file
|
|
kg_builder/src/__pycache__/query_graph.cpython-39.pyc
ADDED
Binary file (829 Bytes). View file
|
|
kg_builder/src/api_connections.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from langchain_community.graphs import Neo4jGraph
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Neo4j connection setup
|
6 |
+
url = "neo4j+s://2f409740.databases.neo4j.io"
|
7 |
+
username = "neo4j"
|
8 |
+
password = "oe7A9ugxhxcuEtwci8khPIt2TTdz_am9AYDx1r9e9Tw"
|
9 |
+
graph = Neo4jGraph(
|
10 |
+
url=url,
|
11 |
+
username=username,
|
12 |
+
password=password
|
13 |
+
)
|
14 |
+
|
15 |
+
# OpenAI API key setup
|
16 |
+
os.environ["OPENAI_API_KEY"] = "sk-proj-hceIL56CC2zfjAvAlMjbT3BlbkFJyHKX2wbiQxsG9yy8dGJN"
|
kg_builder/src/knowledge_graph_builder.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Add to knowledge_graph_builder.py
|
3 |
+
from api_connections import graph
|
4 |
+
|
5 |
+
from langchain_community.graphs.graph_document import (
|
6 |
+
Node as BaseNode,
|
7 |
+
Relationship as BaseRelationship,
|
8 |
+
GraphDocument,
|
9 |
+
)
|
10 |
+
from langchain.schema import Document
|
11 |
+
from typing import List, Dict, Any, Optional
|
12 |
+
from langchain.pydantic_v1 import Field, BaseModel
|
13 |
+
|
14 |
+
class Property(BaseModel):
|
15 |
+
"""A single property consisting of key and value"""
|
16 |
+
key: str = Field(..., description="key")
|
17 |
+
value: str = Field(..., description="value")
|
18 |
+
|
19 |
+
class Node(BaseNode):
|
20 |
+
properties: Optional[List[Property]] = Field(
|
21 |
+
None, description="List of node properties")
|
22 |
+
|
23 |
+
class Relationship(BaseRelationship):
|
24 |
+
properties: Optional[List[Property]] = Field(
|
25 |
+
None, description="List of relationship properties"
|
26 |
+
)
|
27 |
+
|
28 |
+
class KnowledgeGraph(BaseModel):
|
29 |
+
"""Generate a knowledge graph with entities and relationships."""
|
30 |
+
nodes: List[Node] = Field(..., description="List of nodes in the knowledge graph")
|
31 |
+
rels: List[Relationship] = Field(..., description="List of relationships in the knowledge graph")
|
32 |
+
|
33 |
+
def format_property_key(s: str) -> str:
|
34 |
+
words = s.split()
|
35 |
+
if not words:
|
36 |
+
return s
|
37 |
+
first_word = words[0].lower()
|
38 |
+
capitalized_words = [word.capitalize() for word in words[1:]]
|
39 |
+
return "".join([first_word] + capitalized_words)
|
40 |
+
|
41 |
+
def props_to_dict(props) -> dict:
|
42 |
+
"""Convert properties to a dictionary."""
|
43 |
+
properties = {}
|
44 |
+
if not props:
|
45 |
+
return properties
|
46 |
+
for p in props:
|
47 |
+
properties[format_property_key(p.key)] = p.value
|
48 |
+
return properties
|
49 |
+
|
50 |
+
def map_to_base_node(node: Node) -> BaseNode:
|
51 |
+
"""Map the KnowledgeGraph Node to the base Node."""
|
52 |
+
properties = props_to_dict(node.properties) if node.properties else {}
|
53 |
+
properties["name"] = node.id.title() # Assuming nodes have an 'id' attribute for this operation
|
54 |
+
return BaseNode(
|
55 |
+
id=node.id.title(), type=node.type.capitalize(), properties=properties
|
56 |
+
)
|
57 |
+
|
58 |
+
def map_to_base_relationship(rel: Relationship) -> BaseRelationship:
|
59 |
+
"""Map the KnowledgeGraph Relationship to the base Relationship."""
|
60 |
+
source = map_to_base_node(rel.source)
|
61 |
+
target = map_to_base_node(rel.target)
|
62 |
+
properties = props_to_dict(rel.properties) if rel.properties else {}
|
63 |
+
return BaseRelationship(
|
64 |
+
source=source, target=target, type=rel.type, properties=properties
|
65 |
+
)
|
66 |
+
|
67 |
+
import os
|
68 |
+
from langchain.chains.openai_functions import (
|
69 |
+
create_openai_fn_chain,
|
70 |
+
create_structured_output_runnable,
|
71 |
+
create_structured_output_chain,
|
72 |
+
)
|
73 |
+
from langchain_openai import ChatOpenAI
|
74 |
+
from langchain.prompts import ChatPromptTemplate
|
75 |
+
|
76 |
+
# Setting the OpenAI API key for usage in LLM calls
|
77 |
+
os.environ["OPENAI_API_KEY"] = "sk-proj-hceIL56CC2zfjAvAlMjbT3BlbkFJyHKX2wbiQxsG9yy8dGJN"
|
78 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-16k", temperature=0)
|
79 |
+
|
80 |
+
def get_extraction_chain(
|
81 |
+
allowed_nodes: Optional[List[str]] = None,
|
82 |
+
allowed_rels: Optional[List[str]] = None
|
83 |
+
):
|
84 |
+
prompt = ChatPromptTemplate.from_messages(
|
85 |
+
[(
|
86 |
+
"system",
|
87 |
+
f"""# Knowledge Graph Instructions for GPT-4
|
88 |
+
## 1. Overview
|
89 |
+
You are a sophisticated algorithm tailored for parsing Wikipedia pages to construct a knowledge graph about chemotherapy and related cancer treatments.
|
90 |
+
- **Nodes** symbolize entities such as medical conditions, drugs, symptoms, treatments, and associated medical concepts.
|
91 |
+
- The goal is to create a precise and comprehensible knowledge graph, serving as a reliable resource for medical practitioners and scholarly research.
|
92 |
+
|
93 |
+
## 2. Labeling Nodes
|
94 |
+
- **Consistency**: Utilize uniform labels for node types to maintain clarity.
|
95 |
+
- For instance, consistently label drugs as **"Drug"**, symptoms as **"Symptom"**, and treatments as **"Treatment"**.
|
96 |
+
- **Node IDs**: Apply descriptive, legible identifiers for node IDs, sourced directly from the text.
|
97 |
+
|
98 |
+
{'- **Allowed Node Labels:**' + ", ".join(['Drug', 'Symptom', 'Treatment', 'MedicalCondition', 'ResearchStudy']) if allowed_nodes else ""}
|
99 |
+
{'- **Allowed Relationship Types**:' + ", ".join(['Treats', 'Causes', 'Researches', 'Recommends']) if allowed_rels else ""}
|
100 |
+
|
101 |
+
## 3. Handling Numerical Data and Dates
|
102 |
+
- Integrate numerical data and dates as attributes of the corresponding nodes.
|
103 |
+
- **No Isolated Nodes for Dates/Numbers**: Directly associate dates and numerical figures as attributes with pertinent nodes.
|
104 |
+
- **Property Format**: Follow a straightforward key-value pattern for properties, with keys in camelCase, for example, `approvedYear`, `dosageAmount`.
|
105 |
+
|
106 |
+
## 4. Coreference Resolution
|
107 |
+
- **Entity Consistency**: Guarantee uniform identification of each entity across the graph.
|
108 |
+
- For example, if "Methotrexate" and "MTX" reference the same medication, uniformly apply "Methotrexate" as the node ID.
|
109 |
+
|
110 |
+
## 5. Relationship Naming Conventions
|
111 |
+
- **Clarity and Standardization**: Utilize clear and standardized relationship names, preferring uppercase with underscores for readability.
|
112 |
+
- For instance, use "HAS_SIDE_EFFECT" instead of "HASSIDEEFFECT", use "CAN_RESULT_FROM" instead of "CANRESULTFROM" etc. You keep making the same mistakes of storing the relationships without the "_" in between the words. Any further similar errors will lead to termination.
|
113 |
+
- **Relevance and Specificity**: Choose relationship names that accurately reflect the connection between nodes, such as "INHIBITS" or "ACTIVATES" for interactions between substances.
|
114 |
+
|
115 |
+
## 6. Strict Compliance
|
116 |
+
Rigorous adherence to these instructions is essential. Failure to comply with the specified formatting and labeling norms will necessitate output revision or discard.
|
117 |
+
"""),
|
118 |
+
("human", "Use the given format to extract information from the following input: {input}"),
|
119 |
+
("human", "Tip: Precision in the node and relationship creation is vital for the integrity of the knowledge graph."),
|
120 |
+
])
|
121 |
+
return create_structured_output_chain(KnowledgeGraph, llm, prompt)
|
122 |
+
|
123 |
+
def extract_and_store_graph(
|
124 |
+
document: Document,
|
125 |
+
nodes:Optional[List[str]] = None,
|
126 |
+
rels:Optional[List[str]]=None) -> None:
|
127 |
+
# Extract graph data using OpenAI functions
|
128 |
+
extract_chain = get_extraction_chain(nodes, rels)
|
129 |
+
data = extract_chain.invoke(document.page_content)['function']
|
130 |
+
# Construct a graph document
|
131 |
+
graph_document = GraphDocument(
|
132 |
+
nodes = [map_to_base_node(node) for node in data.nodes],
|
133 |
+
relationships = [map_to_base_relationship(rel) for rel in data.rels],
|
134 |
+
source = document
|
135 |
+
)
|
136 |
+
# Store information into a graph
|
137 |
+
graph.add_graph_documents([graph_document])
|
138 |
+
|
kg_builder/src/main.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from knowledge_graph_builder import extract_and_store_graph
|
2 |
+
from query_graph import query_knowledge_graph
|
3 |
+
from langchain_community.document_loaders import WikipediaLoader
|
4 |
+
from langchain.text_splitter import TokenTextSplitter
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
def main():
|
8 |
+
print("Starting the script...")
|
9 |
+
# Take Wikipedia article name as input
|
10 |
+
article_name = input("Enter the Wikipedia article name: ") # Corrected to proper input usage
|
11 |
+
|
12 |
+
print(f"Loading documents for: {article_name}")
|
13 |
+
# Load and process the Wikipedia article
|
14 |
+
raw_documents = WikipediaLoader(query=article_name).load()
|
15 |
+
text_splitter = TokenTextSplitter(chunk_size=4096, chunk_overlap=96)
|
16 |
+
documents = text_splitter.split_documents(raw_documents[:5]) # Only process the first 5 documents
|
17 |
+
|
18 |
+
print("Building the knowledge graph...")
|
19 |
+
# Build the knowledge graph from the documents
|
20 |
+
for i, d in tqdm(enumerate(documents), total=len(documents)):
|
21 |
+
extract_and_store_graph(d)
|
22 |
+
|
23 |
+
print("Graph construction complete. Please enter your query.")
|
24 |
+
# Take a query related to the graph
|
25 |
+
user_query = input("Enter your query related to the graph: ")
|
26 |
+
|
27 |
+
print(f"Querying the graph with: {user_query}")
|
28 |
+
# Query the graph and print the answer
|
29 |
+
answer = query_knowledge_graph(user_query)
|
30 |
+
print("Answer to your query:", answer)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
main()
|
kg_builder/src/query_graph.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import GraphCypherQAChain
|
2 |
+
from langchain_openai import ChatOpenAI
|
3 |
+
from api_connections import graph # Importing 'graph' from 'api_connections.py'
|
4 |
+
|
5 |
+
def query_knowledge_graph(query):
|
6 |
+
print("Refreshing the graph schema...")
|
7 |
+
# Refresh the graph schema before querying
|
8 |
+
graph.refresh_schema()
|
9 |
+
|
10 |
+
print("Setting up the Cypher QA Chain...")
|
11 |
+
# Setup the Cypher QA Chain with specific LLM configurations
|
12 |
+
cypher_chain = GraphCypherQAChain.from_llm(
|
13 |
+
graph=graph,
|
14 |
+
cypher_llm=ChatOpenAI(temperature=0, model="gpt-4"),
|
15 |
+
qa_llm=ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k"),
|
16 |
+
#verbose=True
|
17 |
+
)
|
18 |
+
|
19 |
+
print(f"Executing the query: {query}")
|
20 |
+
# Execute the query and return results
|
21 |
+
result = cypher_chain.invoke({"query": query})
|
22 |
+
print("Query executed. Processing results...")
|
23 |
+
return result
|
kg_creation.ipynb
DELETED
@@ -1,473 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {},
|
7 |
-
"outputs": [],
|
8 |
-
"source": [
|
9 |
-
"import os\n",
|
10 |
-
"os.environ['OPENAI_API_KEY'] = \"sk-proj-k8uMlsAJbdAuSWWnvaHyT3BlbkFJyQB8yMQavFuQDVmc4sNps\"\n",
|
11 |
-
"\n",
|
12 |
-
"import logging\n",
|
13 |
-
"import sys\n",
|
14 |
-
"\n",
|
15 |
-
"logging.basicConfig(\n",
|
16 |
-
" stream=sys.stdout, level=logging.INFO\n",
|
17 |
-
") # logging.DEBUG for more verbose output\n",
|
18 |
-
"\n",
|
19 |
-
"\n",
|
20 |
-
"# define LLM\n",
|
21 |
-
"from llama_index.llms.openai import OpenAI\n",
|
22 |
-
"from llama_index.core import Settings\n",
|
23 |
-
"\n",
|
24 |
-
"Settings.llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\")\n",
|
25 |
-
"Settings.chunk_size = 512"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": 21,
|
31 |
-
"metadata": {},
|
32 |
-
"outputs": [
|
33 |
-
{
|
34 |
-
"name": "stdout",
|
35 |
-
"output_type": "stream",
|
36 |
-
"text": [
|
37 |
-
"Requirement already satisfied: langchain in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.16)\n",
|
38 |
-
"Requirement already satisfied: neo4j in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (5.19.0)\n",
|
39 |
-
"Requirement already satisfied: openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.23.2)\n",
|
40 |
-
"Requirement already satisfied: wikipedia in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.4.0)\n",
|
41 |
-
"Requirement already satisfied: tiktoken in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.6.0)\n",
|
42 |
-
"Requirement already satisfied: langchain_openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.3)\n",
|
43 |
-
"Requirement already satisfied: PyYAML>=5.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (6.0.1)\n",
|
44 |
-
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.0.29)\n",
|
45 |
-
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (3.9.5)\n",
|
46 |
-
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (4.0.3)\n",
|
47 |
-
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.6.4)\n",
|
48 |
-
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.33)\n",
|
49 |
-
"Requirement already satisfied: langchain-community<0.1,>=0.0.32 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.34)\n",
|
50 |
-
"Requirement already satisfied: langchain-core<0.2.0,>=0.1.42 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.45)\n",
|
51 |
-
"Requirement already satisfied: langchain-text-splitters<0.1,>=0.0.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.1)\n",
|
52 |
-
"Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.49)\n",
|
53 |
-
"Requirement already satisfied: numpy<2,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.26.4)\n",
|
54 |
-
"Requirement already satisfied: pydantic<3,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.7.0)\n",
|
55 |
-
"Requirement already satisfied: requests<3,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.31.0)\n",
|
56 |
-
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (8.2.3)\n",
|
57 |
-
"Requirement already satisfied: pytz in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from neo4j) (2024.1)\n",
|
58 |
-
"Requirement already satisfied: anyio<5,>=3.5.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.3.0)\n",
|
59 |
-
"Requirement already satisfied: distro<2,>=1.7.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.9.0)\n",
|
60 |
-
"Requirement already satisfied: httpx<1,>=0.23.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (0.27.0)\n",
|
61 |
-
"Requirement already satisfied: sniffio in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.3.1)\n",
|
62 |
-
"Requirement already satisfied: tqdm>4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.66.2)\n",
|
63 |
-
"Requirement already satisfied: typing-extensions<5,>=4.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.11.0)\n",
|
64 |
-
"Requirement already satisfied: beautifulsoup4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from wikipedia) (4.12.3)\n",
|
65 |
-
"Requirement already satisfied: regex>=2022.1.18 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from tiktoken) (2024.4.16)\n",
|
66 |
-
"Requirement already satisfied: aiosignal>=1.1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
|
67 |
-
"Requirement already satisfied: attrs>=17.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.2.0)\n",
|
68 |
-
"Requirement already satisfied: frozenlist>=1.1.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.4.1)\n",
|
69 |
-
"Requirement already satisfied: multidict<7.0,>=4.5 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.5)\n",
|
70 |
-
"Requirement already satisfied: yarl<2.0,>=1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.4)\n",
|
71 |
-
"Requirement already satisfied: idna>=2.8 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (3.7)\n",
|
72 |
-
"Requirement already satisfied: exceptiongroup>=1.0.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (1.2.1)\n",
|
73 |
-
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (3.21.1)\n",
|
74 |
-
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (0.9.0)\n",
|
75 |
-
"Requirement already satisfied: certifi in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (2024.2.2)\n",
|
76 |
-
"Requirement already satisfied: httpcore==1.* in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (1.0.5)\n",
|
77 |
-
"Requirement already satisfied: h11<0.15,>=0.13 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0)\n",
|
78 |
-
"Requirement already satisfied: jsonpointer>=1.9 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain) (2.4)\n",
|
79 |
-
"Requirement already satisfied: packaging<24.0,>=23.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain-core<0.2.0,>=0.1.42->langchain) (23.2)\n",
|
80 |
-
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.1)\n",
|
81 |
-
"Requirement already satisfied: annotated-types>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (0.6.0)\n",
|
82 |
-
"Requirement already satisfied: pydantic-core==2.18.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (2.18.1)\n",
|
83 |
-
"Requirement already satisfied: charset-normalizer<4,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (3.3.2)\n",
|
84 |
-
"Requirement already satisfied: urllib3<3,>=1.21.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (2.2.1)\n",
|
85 |
-
"Requirement already satisfied: greenlet!=0.4.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.0.3)\n",
|
86 |
-
"Requirement already satisfied: soupsieve>1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from beautifulsoup4->wikipedia) (2.5)\n",
|
87 |
-
"Requirement already satisfied: mypy-extensions>=0.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain) (1.0.0)\n"
|
88 |
-
]
|
89 |
-
}
|
90 |
-
],
|
91 |
-
"source": [
|
92 |
-
"!pip install langchain neo4j openai wikipedia tiktoken langchain_openai"
|
93 |
-
]
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"cell_type": "code",
|
97 |
-
"execution_count": 2,
|
98 |
-
"metadata": {},
|
99 |
-
"outputs": [],
|
100 |
-
"source": [
|
101 |
-
"from langchain.graphs import Neo4jGraph\n",
|
102 |
-
"\n",
|
103 |
-
"url = \"neo4j+s://2f409740.databases.neo4j.io\"\n",
|
104 |
-
"username =\"neo4j\"\n",
|
105 |
-
"password = \"oe7A9ugxhxcuEtwci8khPIt2TTdz_am9AYDx1r9e9Tpw\"\n",
|
106 |
-
"graph = Neo4jGraph(\n",
|
107 |
-
" url=url,\n",
|
108 |
-
" username=username,\n",
|
109 |
-
" password=password\n",
|
110 |
-
")"
|
111 |
-
]
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"cell_type": "code",
|
115 |
-
"execution_count": 4,
|
116 |
-
"metadata": {},
|
117 |
-
"outputs": [],
|
118 |
-
"source": [
|
119 |
-
"from langchain_community.graphs.graph_document import (\n",
|
120 |
-
" Node as BaseNode,\n",
|
121 |
-
" Relationship as BaseRelationship,\n",
|
122 |
-
" GraphDocument,\n",
|
123 |
-
")\n",
|
124 |
-
"from langchain.schema import Document\n",
|
125 |
-
"from typing import List, Dict, Any, Optional\n",
|
126 |
-
"from langchain.pydantic_v1 import Field, BaseModel\n",
|
127 |
-
"\n",
|
128 |
-
"class Property(BaseModel):\n",
|
129 |
-
" \"\"\"A single property consisting of key and value\"\"\"\n",
|
130 |
-
" key: str = Field(..., description=\"key\")\n",
|
131 |
-
" value: str = Field(..., description=\"value\")\n",
|
132 |
-
"\n",
|
133 |
-
"class Node(BaseNode):\n",
|
134 |
-
" properties: Optional[List[Property]] = Field(\n",
|
135 |
-
" None, description=\"List of node properties\")\n",
|
136 |
-
"\n",
|
137 |
-
"class Relationship(BaseRelationship):\n",
|
138 |
-
" properties: Optional[List[Property]] = Field(\n",
|
139 |
-
" None, description=\"List of relationship properties\"\n",
|
140 |
-
" )\n",
|
141 |
-
"\n",
|
142 |
-
"class KnowledgeGraph(BaseModel):\n",
|
143 |
-
" \"\"\"Generate a knowledge graph with entities and relationships.\"\"\"\n",
|
144 |
-
" nodes: List[Node] = Field(\n",
|
145 |
-
" ..., description=\"List of nodes in the knowledge graph\")\n",
|
146 |
-
" rels: List[Relationship] = Field(\n",
|
147 |
-
" ..., description=\"List of relationships in the knowledge graph\"\n",
|
148 |
-
" )"
|
149 |
-
]
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"cell_type": "code",
|
153 |
-
"execution_count": 5,
|
154 |
-
"metadata": {},
|
155 |
-
"outputs": [],
|
156 |
-
"source": [
|
157 |
-
"def format_property_key(s: str) -> str:\n",
|
158 |
-
" words = s.split()\n",
|
159 |
-
" if not words:\n",
|
160 |
-
" return s\n",
|
161 |
-
" first_word = words[0].lower()\n",
|
162 |
-
" capitalized_words = [word.capitalize() for word in words[1:]]\n",
|
163 |
-
" return \"\".join([first_word] + capitalized_words)\n",
|
164 |
-
"\n",
|
165 |
-
"def props_to_dict(props) -> dict:\n",
|
166 |
-
" \"\"\"Convert properties to a dictionary.\"\"\"\n",
|
167 |
-
" properties = {}\n",
|
168 |
-
" if not props:\n",
|
169 |
-
" return properties\n",
|
170 |
-
" for p in props:\n",
|
171 |
-
" properties[format_property_key(p.key)] = p.value\n",
|
172 |
-
" return properties\n",
|
173 |
-
"\n",
|
174 |
-
"def map_to_base_node(node: Node) -> BaseNode:\n",
|
175 |
-
" \"\"\"Map the KnowledgeGraph Node to the base Node.\"\"\"\n",
|
176 |
-
" properties = props_to_dict(node.properties) if node.properties else {}\n",
|
177 |
-
" # Add name property for better Cypher statement generation\n",
|
178 |
-
" properties[\"name\"] = node.id.title()\n",
|
179 |
-
" return BaseNode(\n",
|
180 |
-
" id=node.id.title(), type=node.type.capitalize(), properties=properties\n",
|
181 |
-
" )\n",
|
182 |
-
"\n",
|
183 |
-
"\n",
|
184 |
-
"def map_to_base_relationship(rel: Relationship) -> BaseRelationship:\n",
|
185 |
-
" \"\"\"Map the KnowledgeGraph Relationship to the base Relationship.\"\"\"\n",
|
186 |
-
" source = map_to_base_node(rel.source)\n",
|
187 |
-
" target = map_to_base_node(rel.target)\n",
|
188 |
-
" properties = props_to_dict(rel.properties) if rel.properties else {}\n",
|
189 |
-
" return BaseRelationship(\n",
|
190 |
-
" source=source, target=target, type=rel.type, properties=properties\n",
|
191 |
-
" )"
|
192 |
-
]
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"cell_type": "code",
|
196 |
-
"execution_count": 17,
|
197 |
-
"metadata": {},
|
198 |
-
"outputs": [],
|
199 |
-
"source": [
|
200 |
-
"import os\n",
|
201 |
-
"from langchain.chains.openai_functions import (\n",
|
202 |
-
" create_openai_fn_chain,\n",
|
203 |
-
" create_structured_output_chain,\n",
|
204 |
-
")\n",
|
205 |
-
"from langchain_openai import ChatOpenAI\n",
|
206 |
-
"from langchain.prompts import ChatPromptTemplate\n",
|
207 |
-
"\n",
|
208 |
-
"os.environ[\"OPENAI_API_KEY\"] = \"sk-proj-k8uMlsAJbdAuSWWnvaHyT3BlbkFJyQB8yMQavFuQDVmc4sNs\"\n",
|
209 |
-
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\", temperature=0)\n",
|
210 |
-
"\n",
|
211 |
-
"def get_extraction_chain(\n",
|
212 |
-
" allowed_nodes: Optional[List[str]] = None,\n",
|
213 |
-
" allowed_rels: Optional[List[str]] = None\n",
|
214 |
-
" ):\n",
|
215 |
-
" prompt = ChatPromptTemplate.from_messages(\n",
|
216 |
-
" [(\n",
|
217 |
-
" \"system\",\n",
|
218 |
-
" f\"\"\"# Knowledge Graph Instructions for GPT-4\n",
|
219 |
-
"## 1. Overview\n",
|
220 |
-
"You are a sophisticated algorithm tailored for parsing Wikipedia pages to construct a knowledge graph about chemotherapy and related cancer treatments.\n",
|
221 |
-
"- **Nodes** symbolize entities such as medical conditions, drugs, symptoms, treatments, and associated medical concepts.\n",
|
222 |
-
"- The goal is to create a precise and comprehensible knowledge graph, serving as a reliable resource for medical practitioners and scholarly research.\n",
|
223 |
-
"\n",
|
224 |
-
"## 2. Labeling Nodes\n",
|
225 |
-
"- **Consistency**: Utilize uniform labels for node types to maintain clarity.\n",
|
226 |
-
" - For instance, consistently label drugs as **\"Drug\"**, symptoms as **\"Symptom\"**, and treatments as **\"Treatment\"**.\n",
|
227 |
-
"- **Node IDs**: Apply descriptive, legible identifiers for node IDs, sourced directly from the text.\n",
|
228 |
-
"\n",
|
229 |
-
"{'- **Allowed Node Labels:**' + \", \".join(['Drug', 'Symptom', 'Treatment', 'MedicalCondition', 'ResearchStudy']) if allowed_nodes else \"\"}\n",
|
230 |
-
"{'- **Allowed Relationship Types**:' + \", \".join(['Treats', 'Causes', 'Researches', 'Recommends']) if allowed_rels else \"\"}\n",
|
231 |
-
"\n",
|
232 |
-
"## 3. Handling Numerical Data and Dates\n",
|
233 |
-
"- Integrate numerical data and dates as attributes of the corresponding nodes.\n",
|
234 |
-
"- **No Isolated Nodes for Dates/Numbers**: Directly associate dates and numerical figures as attributes with pertinent nodes.\n",
|
235 |
-
"- **Property Format**: Follow a straightforward key-value pattern for properties, with keys in camelCase, for example, `approvedYear`, `dosageAmount`.\n",
|
236 |
-
"\n",
|
237 |
-
"## 4. Coreference Resolution\n",
|
238 |
-
"- **Entity Consistency**: Guarantee uniform identification of each entity across the graph.\n",
|
239 |
-
" - For example, if \"Methotrexate\" and \"MTX\" reference the same medication, uniformly apply \"Methotrexate\" as the node ID.\n",
|
240 |
-
"\n",
|
241 |
-
"## 5. Relationship Naming Conventions\n",
|
242 |
-
"- **Clarity and Standardization**: Utilize clear and standardized relationship names, preferring uppercase with underscores for readability.\n",
|
243 |
-
" - For instance, use \"HAS_SIDE_EFFECT\" instead of \"HASSIDEEFFECT\", use \"CAN_RESULT_FROM\" instead of \"CANRESULTFROM\" etc.\n",
|
244 |
-
"- **Relevance and Specificity**: Choose relationship names that accurately reflect the connection between nodes, such as \"INHIBITS\" or \"ACTIVATES\" for interactions between substances.\n",
|
245 |
-
"\n",
|
246 |
-
"## 6. Strict Compliance\n",
|
247 |
-
"Rigorous adherence to these instructions is essential. Failure to comply with the specified formatting and labeling norms will necessitate output revision or discard.\n",
|
248 |
-
" \"\"\"),\n",
|
249 |
-
" (\"human\", \"Use the given format to extract information from the following input: {input}\"),\n",
|
250 |
-
" (\"human\", \"Tip: Precision in the node and relationship creation is vital for the integrity of the knowledge graph.\"),\n",
|
251 |
-
" ])\n",
|
252 |
-
" return create_structured_output_chain(KnowledgeGraph, llm, prompt, verbose=False)"
|
253 |
-
]
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"cell_type": "code",
|
257 |
-
"execution_count": 18,
|
258 |
-
"metadata": {},
|
259 |
-
"outputs": [],
|
260 |
-
"source": [
|
261 |
-
"def extract_and_store_graph(\n",
|
262 |
-
" document: Document,\n",
|
263 |
-
" nodes:Optional[List[str]] = None,\n",
|
264 |
-
" rels:Optional[List[str]]=None) -> None:\n",
|
265 |
-
" # Extract graph data using OpenAI functions\n",
|
266 |
-
" extract_chain = get_extraction_chain(nodes, rels)\n",
|
267 |
-
" data = extract_chain.invoke(document.page_content)['function']\n",
|
268 |
-
" # Construct a graph document\n",
|
269 |
-
" graph_document = GraphDocument(\n",
|
270 |
-
" nodes = [map_to_base_node(node) for node in data.nodes],\n",
|
271 |
-
" relationships = [map_to_base_relationship(rel) for rel in data.rels],\n",
|
272 |
-
" source = document\n",
|
273 |
-
" )\n",
|
274 |
-
" # Store information into a graph\n",
|
275 |
-
" graph.add_graph_documents([graph_document])"
|
276 |
-
]
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"cell_type": "code",
|
280 |
-
"execution_count": 21,
|
281 |
-
"metadata": {},
|
282 |
-
"outputs": [],
|
283 |
-
"source": [
|
284 |
-
"from langchain.document_loaders import WikipediaLoader\n",
|
285 |
-
"from langchain.text_splitter import TokenTextSplitter\n",
|
286 |
-
"\n",
|
287 |
-
"# Read the wikipedia article\n",
|
288 |
-
"raw_documents = WikipediaLoader(query=\"Chemotherapy\").load()\n",
|
289 |
-
"# Define chunking strategy\n",
|
290 |
-
"text_splitter = TokenTextSplitter(chunk_size=4096, chunk_overlap=96)\n",
|
291 |
-
"\n",
|
292 |
-
"# Only take the first the raw_documents\n",
|
293 |
-
"documents = text_splitter.split_documents(raw_documents[:5])"
|
294 |
-
]
|
295 |
-
},
|
296 |
-
{
|
297 |
-
"cell_type": "code",
|
298 |
-
"execution_count": 22,
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [
|
301 |
-
{
|
302 |
-
"name": "stderr",
|
303 |
-
"output_type": "stream",
|
304 |
-
"text": [
|
305 |
-
" 0%| | 0/5 [00:00<?, ?it/s]"
|
306 |
-
]
|
307 |
-
},
|
308 |
-
{
|
309 |
-
"name": "stdout",
|
310 |
-
"output_type": "stream",
|
311 |
-
"text": [
|
312 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
313 |
-
]
|
314 |
-
},
|
315 |
-
{
|
316 |
-
"name": "stderr",
|
317 |
-
"output_type": "stream",
|
318 |
-
"text": [
|
319 |
-
" 20%|██ | 1/5 [01:11<04:45, 71.44s/it]"
|
320 |
-
]
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"name": "stdout",
|
324 |
-
"output_type": "stream",
|
325 |
-
"text": [
|
326 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
327 |
-
]
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"name": "stderr",
|
331 |
-
"output_type": "stream",
|
332 |
-
"text": [
|
333 |
-
" 40%|████ | 2/5 [01:25<01:53, 37.82s/it]"
|
334 |
-
]
|
335 |
-
},
|
336 |
-
{
|
337 |
-
"name": "stdout",
|
338 |
-
"output_type": "stream",
|
339 |
-
"text": [
|
340 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
341 |
-
]
|
342 |
-
},
|
343 |
-
{
|
344 |
-
"name": "stderr",
|
345 |
-
"output_type": "stream",
|
346 |
-
"text": [
|
347 |
-
" 60%|██████ | 3/5 [01:33<00:48, 24.24s/it]"
|
348 |
-
]
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"name": "stdout",
|
352 |
-
"output_type": "stream",
|
353 |
-
"text": [
|
354 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
355 |
-
]
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"name": "stderr",
|
359 |
-
"output_type": "stream",
|
360 |
-
"text": [
|
361 |
-
" 80%|████████ | 4/5 [01:49<00:20, 20.99s/it]"
|
362 |
-
]
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"name": "stdout",
|
366 |
-
"output_type": "stream",
|
367 |
-
"text": [
|
368 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
369 |
-
]
|
370 |
-
},
|
371 |
-
{
|
372 |
-
"name": "stderr",
|
373 |
-
"output_type": "stream",
|
374 |
-
"text": [
|
375 |
-
"100%|██████████| 5/5 [01:52<00:00, 22.58s/it]\n"
|
376 |
-
]
|
377 |
-
}
|
378 |
-
],
|
379 |
-
"source": [
|
380 |
-
"from tqdm import tqdm\n",
|
381 |
-
"\n",
|
382 |
-
"for i, d in tqdm(enumerate(documents), total=len(documents)):\n",
|
383 |
-
" extract_and_store_graph(d)"
|
384 |
-
]
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"cell_type": "code",
|
388 |
-
"execution_count": 14,
|
389 |
-
"metadata": {},
|
390 |
-
"outputs": [],
|
391 |
-
"source": [
|
392 |
-
"# Query the knowledge graph in a RAG application\n",
|
393 |
-
"from langchain.chains import GraphCypherQAChain\n",
|
394 |
-
"\n",
|
395 |
-
"graph.refresh_schema()\n",
|
396 |
-
"\n",
|
397 |
-
"cypher_chain = GraphCypherQAChain.from_llm(\n",
|
398 |
-
" graph=graph,\n",
|
399 |
-
" cypher_llm=ChatOpenAI(temperature=0, model=\"gpt-4\"),\n",
|
400 |
-
" qa_llm=ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-16k\"),\n",
|
401 |
-
" validate_cypher=True, # Validate relationship directions\n",
|
402 |
-
" verbose=True\n",
|
403 |
-
")"
|
404 |
-
]
|
405 |
-
},
|
406 |
-
{
|
407 |
-
"cell_type": "code",
|
408 |
-
"execution_count": 23,
|
409 |
-
"metadata": {},
|
410 |
-
"outputs": [
|
411 |
-
{
|
412 |
-
"name": "stdout",
|
413 |
-
"output_type": "stream",
|
414 |
-
"text": [
|
415 |
-
"\n",
|
416 |
-
"\n",
|
417 |
-
"\u001b[1m> Entering new GraphCypherQAChain chain...\u001b[0m\n",
|
418 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
419 |
-
"Generated Cypher:\n",
|
420 |
-
"\u001b[32;1m\u001b[1;3mMATCH (c:Condition {name: \"Cancer\"})-[:CANRESULTFROM]->(t:Treatment) RETURN t.name\u001b[0m\n",
|
421 |
-
"Full Context:\n",
|
422 |
-
"\u001b[32;1m\u001b[1;3m[]\u001b[0m\n",
|
423 |
-
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
424 |
-
"\n",
|
425 |
-
"\u001b[1m> Finished chain.\u001b[0m\n"
|
426 |
-
]
|
427 |
-
},
|
428 |
-
{
|
429 |
-
"data": {
|
430 |
-
"text/plain": [
|
431 |
-
"{'query': 'What are the different treatment strategies for cancer?',\n",
|
432 |
-
" 'result': \"I'm sorry, but I don't have the information to answer that question.\"}"
|
433 |
-
]
|
434 |
-
},
|
435 |
-
"execution_count": 23,
|
436 |
-
"metadata": {},
|
437 |
-
"output_type": "execute_result"
|
438 |
-
}
|
439 |
-
],
|
440 |
-
"source": [
|
441 |
-
"cypher_chain.invoke({\"query\": \"What are the different treatment strategies for cancer?\"})"
|
442 |
-
]
|
443 |
-
},
|
444 |
-
{
|
445 |
-
"cell_type": "code",
|
446 |
-
"execution_count": null,
|
447 |
-
"metadata": {},
|
448 |
-
"outputs": [],
|
449 |
-
"source": []
|
450 |
-
}
|
451 |
-
],
|
452 |
-
"metadata": {
|
453 |
-
"kernelspec": {
|
454 |
-
"display_name": "my_project_env",
|
455 |
-
"language": "python",
|
456 |
-
"name": "python3"
|
457 |
-
},
|
458 |
-
"language_info": {
|
459 |
-
"codemirror_mode": {
|
460 |
-
"name": "ipython",
|
461 |
-
"version": 3
|
462 |
-
},
|
463 |
-
"file_extension": ".py",
|
464 |
-
"mimetype": "text/x-python",
|
465 |
-
"name": "python",
|
466 |
-
"nbconvert_exporter": "python",
|
467 |
-
"pygments_lexer": "ipython3",
|
468 |
-
"version": "3.9.19"
|
469 |
-
}
|
470 |
-
},
|
471 |
-
"nbformat": 4,
|
472 |
-
"nbformat_minor": 2
|
473 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|