--- library_name: transformers tags: - nli - bert - natural-language-inference language: - ru metrics: - accuracy - f1 - precision - recall base_model: - cointegrated/rubert-tiny2 pipeline_tag: text-classification model-index: - name: rubert-tiny-nli-terra-v0 results: - task: type: text-classification name: Text Classification dataset: name: TERRA type: NLI split: validation metrics: - type: accuracy value: 0.6742671009771987 name: Accuracy - type: f1 value: 0.6710526315789473 name: F1 - type: precision value: 0.6754966887417219 name: Precision - type: recall value: 0.6666666666666666 name: Recall --- **⚠️ Disclaimer: This model is in the early stages of development and may produce low-quality predictions. For better results, consider using the recommended Russian natural language inference models available [here](https://huggingface.co./cointegrated).** # RuBERT-tiny-nli v1 This model is the second iteration of the [RuBERT-tiny2](https://huggingface.co./cointegrated/rubert-tiny2) models for a two-way natural language inference task, utilizing the Russian [Textual Entailment Recognition](https://russiansuperglue.com/tasks/task_info/TERRa) dataset. This model comprises two dense layers in the classifier head to improve inference capabilities. However, it is important to note that the model's performance is currently limited, indicating potential areas for further improvement and fine-tuning. ## Usage How to run the model for NLI: ```python # !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_id = 'Marwolaeth/rubert-tiny-nli-terra-v1' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) if torch.cuda.is_available(): model.cuda() # An example from cointegrated NLI models premise1 = 'Сократ - человек, а все люди смертны.' hypothesis1 = 'Сократ никогда не умрёт.' with torch.inference_mode(): prediction = model( **tokenizer(premise1, hypothesis1, return_tensors='pt').to(model.device) ) p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] print({v: p[k] for k, v in model.config.id2label.items()}) # {'not_entailment': 0.68763, 'entailment': 0.31237} # An example concerning sentiments premise2 = 'Мне не нравятся желтые ковры.' hypothesis2 = 'Я люблю желтые ковры.' with torch.inference_mode(): prediction = model( **tokenizer(premise2, hypothesis2, return_tensors='pt').to(model.device) ) p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] print({v: p[k] for k, v in model.config.id2label.items()}) # {'not_entailment': 0.5894801, 'entailment': 0.41051993} # A tricky example # Many NLI models fail to refute premise-hypothesis pairs like: # 'It is good for our enemies that X' — 'It is good for us that X' # This contradiction is quite clear, yet many NLI models struggle to accurately identify it, # highlighting their limitations in understanding conflicting sentiments in natural language inference. premise3 = 'Для наших врагов хорошо, что это дерево красное.' hypothesis3 = 'Для нас хорошо, что это дерево красное.' with torch.inference_mode(): prediction = model( **tokenizer(premise3, hypothesis3, return_tensors='pt').to(model.device) ) p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] print({v: p[k] for k, v in model.config.id2label.items()}) # {'not_entailment': 0.54253, 'entailment': 0.45746994} ``` ## Model Performance Metrics The following metrics summarize the performance of the model on the validation dataset: | Metric | Value | |----------------------------------|---------------------------| | **Validation Loss** | 0.6492 | | **Validation Accuracy** | 67.43% | | **Validation F1 Score** | 67.11% | | **Validation Precision** | 67.55% | | **Validation Recall** | 66.67% | | **Validation Runtime*** | 0.2631 seconds | | **Samples per Second*** | 1 167.02 | | **Steps per Second*** | 7.60 | *Using T4 GPU with Google Colab